1
|
Yagi H, Boeck M, Petrishka-Lozenska M, Lundgren P, Kasai T, Cagnone G, Neilsen K, Wang C, Lee J, Tomita Y, Singh SA, Joyal JS, Aikawa M, Negishi K, Fu Z, Hellström A, Smith LEH. Timed topical dexamethasone eye drops improve mitochondrial function to prevent severe retinopathy of prematurity. Angiogenesis 2024; 27:903-917. [PMID: 39287727 PMCID: PMC11564262 DOI: 10.1007/s10456-024-09948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Pathological neovascularization in retinopathy of prematurity (ROP) can cause visual impairment in preterm infants. Current ROP treatments which are not preventative and only address late neovascular ROP, are costly and can lead to severe complications. We showed that topical 0.1% dexamethasone eye drops administered prior to peak neovessel formation prevented neovascularization in five extremely preterm infants at high risk for ROP and suppressed neovascularization by 30% in mouse oxygen-induced retinopathy (OIR) modeling ROP. In contrast, in OIR, topical dexamethasone treatment before any neovessel formation had limited efficacy in preventing later neovascularization, while treatment after peak neovessel formation had a non-statistically significant trend to exacerbating disease. Optimally timed topical dexamethasone suppression of neovascularization in OIR was associated with increased retinal mitochondrial gene expression and decreased inflammatory marker expression, predominantly found in immune cells. Blocking mitochondrial ATP synthetase reversed the inhibitory effect of dexamethasone on neovascularization in OIR. This study provides new insights into topical steroid effects in retinal neovascularization and into mitochondrial function in phase II ROP, and suggests a simple clinical approach to prevent severe ROP.
Collapse
Affiliation(s)
- Hitomi Yagi
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Myriam Boeck
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Mariya Petrishka-Lozenska
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Pia Lundgren
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Taku Kasai
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Gael Cagnone
- CHU Sainte-Justine Research Center, Montreal, QC, CA, H3T 1C5, Canada
- Department of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine, Université de Montréal, Montreal, QC, CA, H3T 1C5, Canada
| | - Katherine Neilsen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
| | - Chaomei Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
| | - Jeff Lee
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
| | - Yohei Tomita
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jean-Sébastien Joyal
- CHU Sainte-Justine Research Center, Montreal, QC, CA, H3T 1C5, Canada
- Department of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine, Université de Montréal, Montreal, QC, CA, H3T 1C5, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC, CA, H3T 1J4, Canada
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
| | - Ann Hellström
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden.
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Yagi H, Boeck M, Nian S, Neilsen K, Wang C, Lee J, Zeng Y, Grumbine M, Sweet IR, Kasai T, Negishi K, Singh SA, Aikawa M, Hellström A, Smith LEH, Fu Z. Mitochondrial control of hypoxia-induced pathological retinal angiogenesis. Angiogenesis 2024; 27:691-699. [PMID: 39096357 PMCID: PMC11564381 DOI: 10.1007/s10456-024-09940-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
OBJECTIVE Pathological retinal neovascularization is vision-threatening. In mouse oxygen-induced retinopathy (OIR) we sought to define mitochondrial respiration changes longitudinally during hyperoxia-induced vessel loss and hypoxia-induced neovascularization, and to test interventions addressing those changes to prevent neovascularization. METHODS OIR was induced in C57BL/6J mice and retinal vasculature was examined at maximum neovessel formation. We assessed total proteome changes and the ratio of mitochondrial to nuclear DNA copy numbers (mtDNA/nDNA) of OIR vs. control retinas, and mitochondrial oxygen consumption rates (OCR) in ex vivo OIR vs. control retinas (BaroFuse). Pyruvate vs. vehicle control was supplemented to OIR mice either prior to or during neovessel formation. RESULTS In OIR vs. control retinas, global proteomics showed decreased retinal mitochondrial respiration at peak neovascularization. OCR and mtDNA/nDNA were also decreased at peak neovascularization suggesting impaired mitochondrial respiration. In vivo pyruvate administration during but not prior to neovessel formation (in line with mitochondrial activity time course) suppressed NV. CONCLUSIONS Mitochondrial energetics were suppressed during retinal NV in OIR. Appropriately timed supplementation of pyruvate may be a novel approach in neovascular retinal diseases.
Collapse
Affiliation(s)
- Hitomi Yagi
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Myriam Boeck
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Shen Nian
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
- Department of Pathology, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, China
| | - Katherine Neilsen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
| | - Chaomei Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
| | - Jeff Lee
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
| | - Yan Zeng
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
| | | | - Ian R Sweet
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, 98109, USA
| | - Taku Kasai
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ann Hellström
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA.
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Maurya M, Liu CH, Bora K, Kushwah N, Pavlovich MC, Wang Z, Chen J. Animal Models of Retinopathy of Prematurity: Advances and Metabolic Regulators. Biomedicines 2024; 12:1937. [PMID: 39335451 PMCID: PMC11428941 DOI: 10.3390/biomedicines12091937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/30/2024] Open
Abstract
Retinopathy of prematurity (ROP) is a primary cause of visual impairment and blindness in premature newborns, characterized by vascular abnormalities in the developing retina, with microvascular alteration, neovascularization, and in the most severe cases retinal detachment. To elucidate the pathophysiology and develop therapeutics for ROP, several pre-clinical experimental models of ROP were developed in different species. Among them, the oxygen-induced retinopathy (OIR) mouse model has gained the most popularity and critically contributed to our current understanding of pathological retinal angiogenesis and the discovery of potential anti-angiogenic therapies. A deeper comprehension of molecular regulators of OIR such as hypoxia-inducible growth factors including vascular endothelial growth factors as primary perpetrators and other new metabolic modulators such as lipids and amino acids influencing pathological retinal angiogenesis is also emerging, indicating possible targets for treatment strategies. This review delves into the historical progressions that gave rise to the modern OIR models with a focus on the mouse model. It also reviews the fundamental principles of OIR, recent advances in its automated assessment, and a selected summary of metabolic investigation enabled by OIR models including amino acid transport and metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
4
|
El Emrani S, van der Meeren LE, Jansen EJS, Goeman JJ, Termote JUM, Lopriore E, Schalij-Delfos NE. Early-Onset Sepsis as an Early Predictor for Retinopathy of Prematurity: A Meta-analysis. Am J Perinatol 2024. [PMID: 39029916 DOI: 10.1055/a-2369-6690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
OBJECTIVE Neonatal sepsis has been established as a risk factor for retinopathy of prematurity (ROP) but previous meta-analyses have predominately focused on late-onset sepsis (LOS). This meta-analysis aims to explore the association between early-onset sepsis (EOS) and the risk of ROP. STUDY DESIGN Observational studies reporting (unadjusted) data on proven EOS in neonates with ROP were included. PubMed, Embase, and Cochrane Library were searched. Proven EOS was defined as a positive blood or cerebrospinal fluid culture. Effect sizes were calculated by using logistic random-effects models and meta-regression analyses. Primary outcomes were any stage ROP and severe ROP (≥stage 3, type I, aggressive [posterior] ROP, plus disease or requiring treatment). Potential confounders explored were gestational age at birth, birth weight, small for gestational age, maternal steroid use, necrotizing enterocolitis, LOS, and mechanical ventilation duration. RESULTS Seventeen studies reporting the incidence of proven EOS in neonates with ROP were included. Proven EOS showed no significant association with any stage ROP (odds ratio [OR] = 1.90; 95% confidence interval [CI]: 0.96-3.79, p = 0.067) but heterogeneity between studies was significantly high. Neonates with proven EOS had an increased risk for severe ROP (OR = 2.21; 95% CI: 1.68-2.90), and no significant confounders influencing this effect size were found in the meta-regression analysis. CONCLUSION Neonates with proven EOS are at increased risk of severe ROP. Neonatologists need to be aware that EOS is an early predictor of ROP and should adapt their policy and treatment decisions where possible to reduce ROP. KEY POINTS · This meta-analysis reveals a 2.2-fold increased risk of severe ROP in neonates with proven EOS.. · Future studies should distinguish between EOS and LOS when investigating risk factors of ROP.. · Treatment decisions should be adapted where possible in neonates with EOS before ROP screening begins..
Collapse
Affiliation(s)
- Salma El Emrani
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Neonatology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Lotte E van der Meeren
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Esther J S Jansen
- Neonatology, Department of Women and Neonate, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jelle J Goeman
- Medical Statistics, Department of Biomedical Data Science, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacqueline U M Termote
- Neonatology, Department of Women and Neonate, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Enrico Lopriore
- Neonatology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
5
|
Ai J, Cao Y, Zhang C, Sun JH, Dong F, Jing L, Wang J, Cui H. Deciphering the interplay of gut microbiota and metabolomics in retinal vein occlusion. Microbiol Spectr 2024; 12:e0005224. [PMID: 38980030 PMCID: PMC11302663 DOI: 10.1128/spectrum.00052-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
This study aims to explore the link between retinal vein occlusion (RVO), a blinding ocular condition, and alterations in gut microbiota composition, to offer insights into the pathogenesis of RVO. Fecal samples from 25 RVO patients and 11 non-RVO individuals were analyzed using 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC-MS). Significant differences in the abundance of gut microbial species were noted between RVO and non-RVO groups. At the phylum level, the RVO group showed an elevation in the ratio of Firmicutes to Bacteroidetes. At the genus level, the RVO group showed higher abundance in Escherichia_Shigella (P < 0.05) and less abundance in Parabacteroides (P < 0.01) than the non-RVO group. Functional predictions indicated reduced folate synthesis, biotin metabolism, and oxidative phosphorylation, with an increase in butyric acid metabolism in the RVO group. LC-MS analysis showed significant differences in purine metabolism, ABC transporters, and naphthalene degradation pathways, especially purine metabolism. Pearson correlation analysis revealed significant associations between bacterial genera and fecal metabolites. Enrichment analysis highlighted connections between specific metabolites and bacterial genera. The findings showed that the dysregulation of gut microbiota was observed in RVO patients, suggesting the gut microbiota as a potential therapeutic target. Modulating the gut microbiota could be a novel strategy for managing RVO and improving patient outcomes. Furthermore, the study findings suggest the involvement of gut microbial dysbiosis in RVO development, underscoring the significance of understanding its pathogenesis for effective treatment development. IMPORTANCE Retinal vein occlusion (RVO) is a blinding ocular condition, and understanding its pathogenesis is crucial for developing effective treatments. This study demonstrates significant differences in gut microbiota composition between RVO patients and non-RVO individuals, implicating the involvement of gut microbial dysbiosis in RVO development. Functional predictions and metabolic profiling provide insights into the underlying mechanisms, highlighting potential pathways for therapeutic intervention. These findings suggest that modulating the gut microbiota might be a promising strategy for managing RVO and improving patient outcomes.
Collapse
Affiliation(s)
- Jing Ai
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yunbo Cao
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Cong Zhang
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jun-Hui Sun
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Feng Dong
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Li Jing
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jianyong Wang
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Hongguang Cui
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
6
|
Lima Barrientos J, Rojas Huerta A, Perez Mendoza A, Abreu Lopez BA, Salolin Vargas VP, Garcia Gonzalez OY, Saldaña Ruiz MA, Diarte E, Torijano Sarria AJ. The Relationship Between Gut Microbiome and Ophthalmologic Diseases: A Comprehensive Review. Cureus 2024; 16:e66808. [PMID: 39280427 PMCID: PMC11392598 DOI: 10.7759/cureus.66808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
The gut microbiome has been studied in recent years due to its association with various pathological pathways involved in different diseases, caused by its structure, function, and diversity alteration. The knowledge of this mechanism has generated interest in the investigation of its relationship with ophthalmologic diseases. Recent studies infer the existence of a gut-eye microbiota axis, influenced by the intestinal barrier, the blood-retina barrier, and the immune privilege of the eye. A common denominator among ophthalmologic diseases that have been related to this axis is inflammation, which is perpetuated by dysbiosis, causing an alteration of the intestinal barrier leading to increased permeability and, in turn, the release of components such as lipopolysaccharides (LPS), trimethylamine oxide (TMAO), and bacterial translocation. Some theories explain that depending on how the microbiome is composed, a different type of T cells will be activated, while others say that some bacteria can pre-activate T cells that mimic ocular structures and intestinal permeability that allow leakage of metabolites into the circulation. In addition, therapies such as probiotics, diet, and fecal microbiota transplantation (FMT) have been shown to favor the presence of a balanced population of microorganisms that limit inflammation and, in turn, generate a beneficial effect in these eye pathologies. This review aims to analyze how the intestinal microbiome influences various ocular pathologies based on microbial composition and pathological mechanisms, which may provide a better understanding of the diseases and their therapeutic potential.
Collapse
Affiliation(s)
| | - Anahi Rojas Huerta
- General Practice, Benemérita Universidad Autónoma de Puebla, Puebla, MEX
| | | | | | | | | | | | - Edna Diarte
- Medicine, Universidad Autónoma de Sinaloa, Culiacan, MEX
| | | |
Collapse
|
7
|
Yagi H, Boeck M, Petrishka-Lozenska M, Lundgren P, Kasai T, Cagnone G, Wang C, Lee J, Tomita Y, Singh SA, Joyal JS, Aikawa M, Negishi K, Fu Z, Hellström A, Smith LEH. Timed topical dexamethasone eye drops improve mitochondrial function to prevent severe retinopathy of prematurity. RESEARCH SQUARE 2024:rs.3.rs-4619093. [PMID: 38978601 PMCID: PMC11230485 DOI: 10.21203/rs.3.rs-4619093/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Pathological neovascularization in retinopathy of prematurity (ROP) can cause visual impairment in preterm infants. Current ROP treatments which are not preventative and only address late neovascular ROP, are costly and can lead to severe complications. We showed that topical 0.1% dexamethasone eye drops administered prior to peak neovessel formation prevented neovascularization in five extremely preterm infants at high risk for ROP and suppressed neovascularization by 30% in mouse oxygen-induced retinopathy (OIR) modeling ROP. In contrast, in OIR, topical dexamethasone treatment before any neovessel formation had limited efficacy in preventing later neovascularization, while treatment after peak neovessel formation had a non-statistically significant trend to exacerbating disease. Optimally timed topical dexamethasone suppression of neovascularization in OIR was associated with increased retinal mitochondrial gene expression and decreased inflammatory marker expression, predominantly found in immune cells. Blocking mitochondrial ATP synthetase reversed the inhibitory effect of dexamethasone on neovascularization in OIR. This study provides new insights into topical steroid effects in retinal neovascularization and into mitochondrial function in phase II ROP, and suggests a simple clinical approach to prevent severe ROP.
Collapse
Affiliation(s)
| | | | | | | | | | - Gael Cagnone
- CHU Sainte-Justine, Université de Montréal
- Boston Children's Hospital
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lee D, Fu Z, Hellstrom A, Smith LEH. Therapeutic Effects of Anti-Inflammatory and Anti-Oxidant Nutritional Supplementation in Retinal Ischemic Diseases. Int J Mol Sci 2024; 25:5503. [PMID: 38791541 PMCID: PMC11122288 DOI: 10.3390/ijms25105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Appropriate nutrients are essential for cellular function. Dietary components can alter the risk of systemic metabolic diseases, including cardiovascular diseases, cancer, diabetes, and obesity, and can also affect retinal diseases, including age-related macular degeneration, diabetic retinopathy, and glaucoma. Dietary nutrients have been assessed for the prevention or treatment of retinal ischemic diseases and the diseases of aging. In this article, we review clinical and experimental evidence concerning the potential of some nutritional supplements to prevent or treat retinal ischemic diseases and provide further insights into the therapeutic effects of nutritional supplementation on retinopathies. We will review the roles of nutrients in preventing or protecting against retinal ischemic diseases.
Collapse
Affiliation(s)
- Deokho Lee
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ann Hellstrom
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 416 85 Gothenburg, Sweden
| | - Lois E. H. Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Protsyk O, García Serrano JL. Mechanical Ventilation, Retinal Avascularity and Rate of Vascularisation: A Triad of Predictors for Retinopathy of Prematurity Treatment. J Pers Med 2024; 14:379. [PMID: 38673006 PMCID: PMC11050857 DOI: 10.3390/jpm14040379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
AIM The temporal avascular area of the retina and the duration of mechanical ventilation (DMV) may predict the need to treat retinopathy of prematurity (ROP). This study considers whether the rate of retinal vascularisation and related risk factors should be included in a predictive model of the need for ROP treatment. METHODS This single-centre, observational retrospective case-control study was conducted on 276 preterm infants included in an ROP screening programme. All had undergone at least three examinations of the fundus. The main outcome measures considered were DMV (in days of treatment), the temporal avascular area (in disc diameters, DD) and the rate of temporal retinal vascularisation (DD/week). RESULTS The multivariate logistic model that best explains ROP treatment (R2 = 63.1%) has three significant risk factors: each additional day of mechanical ventilation (OR, 1.05 [95% CI, 1.02-1.09]; p = 0.001); each additional DD of temporal avascular area (OR, 2.2 [95% CI, 1.7-2.9]; p < 0.001) and a vascularisation rate <0.5 DD/week (OR, 19.0 [95% CI, 6.5-55.5]; p < 0.001). Two tables are presented for calculating the expected need for ROP treatment according to these three risk factors. CONCLUSIONS A greater DMV, a broad avascular area of the temporal retina at the first binocular screening and slow retinal vascularisation strongly predict the need for ROP treatment. The predictive model we describe must be validated externally in other centres.
Collapse
Affiliation(s)
- Olena Protsyk
- Department of Ophthalmology, Jaen University Hospital, Av. del Ejército Español 10, 23007 Jaén, Spain;
| | - José Luis García Serrano
- Department of Surgery and Related Specialities, University of Granada, 18012 Granada, Spain
- Ophthalmology Service, Hospital Clínico San Cecilio, 18016 Granada, Spain
| |
Collapse
|
10
|
Chen X, Sun X, Ge Y, Zhou X, Chen JF. Targeting adenosine A 2A receptors for early intervention of retinopathy of prematurity. Purinergic Signal 2024:10.1007/s11302-024-09986-x. [PMID: 38329708 DOI: 10.1007/s11302-024-09986-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Retinopathy of prematurity (ROP) continues to pose a significant threat to the vision of numerous children worldwide, primarily owing to the increased survival rates of premature infants. The pathologies of ROP are mainly linked to impaired vascularization as a result of hyperoxia, leading to subsequent neovascularization. Existing treatments, including anti-vascular endothelial growth factor (VEGF) therapies, have thus far been limited to addressing pathological angiogenesis at advanced ROP stages, inevitably leading to adverse side effects. Intervention to promote physiological angiogenesis during the initial stages could hold the potential to prevent ROP. Adenosine A2A receptors (A2AR) have been identified in various ocular cell types, exhibiting distinct densities and functionally intricate connections with oxygen metabolism. In this review, we discuss experimental evidence that strongly underscores the pivotal role of A2AR in ROP. In particular, A2AR blockade may represent an effective treatment strategy, mitigating retinal vascular loss by reversing hyperoxia-mediated cellular proliferation inhibition and curtailing hypoxia-mediated neovascularization in oxygen-induced retinopathy (OIR). These effects stem from the interplay of endothelium, neuronal and glial cells, and novel molecular pathways (notably promoting TGF-β signaling) at the hyperoxia phase. We propose that pharmacological targeting of A2AR signaling may confer an early intervention for ROP with distinct therapeutic benefits and mechanisms than the anti-VEGF therapy.
Collapse
Affiliation(s)
- Xuhao Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaoting Sun
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Ge
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Xuzhao Zhou
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China.
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China.
| |
Collapse
|
11
|
Harman JC, Pivodic A, Nilsson AK, Boeck M, Yagi H, Neilsen K, Ko M, Yang J, Kinter M, Hellström A, Fu Z. Postnatal hyperglycemia alters amino acid profile in retinas (model of Phase I ROP). iScience 2023; 26:108021. [PMID: 37841591 PMCID: PMC10568433 DOI: 10.1016/j.isci.2023.108021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/03/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Nutritional deprivation occurring in most preterm infants postnatally can induce hyperglycemia, a significant and independent risk factor for suppressing physiological retinal vascularization (Phase I retinopathy of prematurity (ROP)), leading to compensatory but pathological neovascularization. Amino acid supplementation reduces retinal neovascularization in mice. Little is known about amino acid contribution to Phase I ROP. In mice modeling hyperglycemia-associated Phase I ROP, we found significant changes in retinal amino acids (including most decreased L-leucine, L-isoleucine, and L-valine). Parenteral L-isoleucine suppressed physiological retinal vascularization. In premature infants, severe ROP was associated with a higher mean intake of parenteral versus enteral amino acids in the first two weeks of life after adjustment for treatment group, gestational age at birth, birth weight, and sex. The number of days with parenteral amino acids support independently predicted severe ROP. Further understanding and modulating amino acids may help improve nutritional intervention and prevent Phase I ROP.
Collapse
Affiliation(s)
- Jarrod C. Harman
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aldina Pivodic
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders K. Nilsson
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Myriam Boeck
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Hitomi Yagi
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Katherine Neilsen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Minji Ko
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jay Yang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Kinter
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ann Hellström
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Sun T, Yu H, Li D, Zhang H, Fu J. Emerging role of metabolic reprogramming in hyperoxia-associated neonatal diseases. Redox Biol 2023; 66:102865. [PMID: 37659187 PMCID: PMC10480540 DOI: 10.1016/j.redox.2023.102865] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023] Open
Abstract
Oxygen therapy is common during the neonatal period to improve survival, but it can increase the risk of oxygen toxicity. Hyperoxia can damage multiple organs and systems in newborns, commonly causing lung conditions such as bronchopulmonary dysplasia and pulmonary hypertension, as well as damage to other organs, including the brain, gut, and eyes. These conditions are collectively referred to as newborn oxygen radical disease to indicate the multi-system damage caused by hyperoxia. Hyperoxia can also lead to changes in metabolic pathways and the production of abnormal metabolites through a process called metabolic reprogramming. Currently, some studies have analyzed the mechanism of metabolic reprogramming induced by hyperoxia. The focus has been on mitochondrial oxidative stress, mitochondrial dynamics, and multi-organ interactions, such as the lung-gut, lung-brain, and brain-gut axes. In this article, we provide an overview of the major metabolic pathway changes reported in hyperoxia-associated neonatal diseases and explore the potential mechanisms of metabolic reprogramming. Metabolic reprogramming induced by hyperoxia can cause multi-organ metabolic disorders in newborns, including abnormal glucose, lipid, and amino acid metabolism. Moreover, abnormal metabolites may predict the occurrence of disease, suggesting their potential as therapeutic targets. Although the mechanism of metabolic reprogramming caused by hyperoxia requires further elucidation, mitochondria and the gut-lung-brain axis may play a key role in metabolic reprogramming.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Danni Li
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jianhua Fu
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
13
|
Qi D, Zou S, Lu D, Pei X, Huang S, Huang DL, Liu J, Si H, Li Z. Long-term high fructose intake promotes lacrimal gland dysfunction by inducing gut dysbiosis in mice. Exp Eye Res 2023; 234:109573. [PMID: 37442219 DOI: 10.1016/j.exer.2023.109573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
The lacrimal gland is essential for maintaining ocular surface health through the secretion of the aqueous layer of the tear film. It is therefore important to explore the intrinsic and extrinsic factors that affect the structure and function of the lacrimal gland and the mechanisms underlying them. With the prevalence of Westernized diets characterized by high sugar and fat content, the susceptibility to many diseases, including ocular diseases, is increased by inducing dysbiosis of the gut microbiome. Here, we found that the composition, abundance, and diversity of the gut microbiome was significantly altered in mice by drinking 15% high fructose water for one month, as determined by 16S rRNA sequencing. This was accompanied by a significant increase in lipid deposition and inflammatory cell infiltration in the extraorbital lacrimal glands (ELGs) of mice. Transcriptome analysis based on bulk RNA-sequencing revealed abnormal activation of some of several metabolic and immune-related pathways. In addition, the secretory response to stimulation with the cholinergic receptor agonist pilocarpine was significantly reduced. However, when the composition and diversity of the gut microbiome of high fructose intake (HFI)-treated mice were improved by transplanting feces from normal young healthy mice, the pathological alterations in ELG structure, inflammatory cell infiltration, secretory function and transcriptome analysis described above were significantly reversed compared to age-matched control mice. In conclusion, our data suggest that prolonged HFI may cause pathological damage to the structure and function of the ELG through the induction of gut dysbiosis. Restoration of intestinal dysbiosis in HFI-treated mice by fecal transplantation has a potential role in ameliorating these pathological impairments.
Collapse
Affiliation(s)
- Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Sen Zou
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Du-Liurui Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Jiangman Liu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Hongli Si
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China.
| |
Collapse
|
14
|
Fu Z, Lundgren P, Pivodic A, Yagi H, Harman JC, Yang J, Ko M, Neilsen K, Talukdar S, Hellström A, Smith LEH. FGF21 via mitochondrial lipid oxidation promotes physiological vascularization in a mouse model of Phase I ROP. Angiogenesis 2023; 26:409-421. [PMID: 36943533 PMCID: PMC10328855 DOI: 10.1007/s10456-023-09872-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/04/2023] [Indexed: 03/23/2023]
Abstract
Hyperglycemia in early postnatal life of preterm infants with incompletely vascularized retinas is associated with increased risk of potentially blinding neovascular retinopathy of prematurity (ROP). Neovascular ROP (Phase II ROP) is a compensatory but ultimately pathological response to the suppression of physiological postnatal retinal vascular development (Phase I ROP). Hyperglycemia in neonatal mice which suppresses physiological retinal vascular growth is associated with decreased expression of systemic and retinal fibroblast growth factor 21 (FGF21). FGF21 administration promoted and FGF21 deficiency suppressed the physiological retinal vessel growth. FGF21 increased serum adiponectin (APN) levels and loss of APN abolished FGF21 promotion of physiological retinal vascular development. Blocking mitochondrial fatty acid oxidation also abolished FGF21 protection against delayed physiological retinal vessel growth. Clinically, preterm infants developing severe neovascular ROP (versus non-severe ROP) had a lower total lipid intake with more parenteral and less enteral during the first 4 weeks of life. Our data suggest that increasing FGF21 levels in the presence of adequate enteral lipids may help prevent Phase I retinopathy (and therefore prevent neovascular disease).
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Pia Lundgren
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Aldina Pivodic
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hitomi Yagi
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Jarrod C Harman
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jay Yang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Minji Ko
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Katherine Neilsen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Ann Hellström
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Borțea CI, Enatescu I, Dima M, Pantea M, Iacob ER, Dumitru C, Popescu A, Stoica F, Heredea RE, Iacob D. A Prospective Analysis of the Retinopathy of Prematurity Correlated with the Inflammatory Status of the Extremely Premature and Very Premature Neonates. Diagnostics (Basel) 2023; 13:2105. [PMID: 37371000 DOI: 10.3390/diagnostics13122105] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Retinopathy of Prematurity (ROP) is a major cause of blindness in premature infants. This study aimed to evaluate the association between inflammatory markers and ROP development in extremely premature and very premature neonates and identify potential inflammatory biomarkers for ROP risk prediction. This prospective study was conducted from January 2021 to January 2023 in two clinical hospitals associated with the "Victor Babes" University of Medicine and Pharmacy Timisoara. The study population comprised neonates with a gestational age of less than 32 weeks. Various inflammatory markers, including total white blood cell count, polymorphonuclear leukocytes, C-reactive protein, interleukin-6, and lactate dehydrogenase, were analyzed from blood samples collected at birth and three days postnatally. ROP was diagnosed and classified following the International Classification of Retinopathy of Prematurity. The study included 48 neonates, 12 Extremely Premature Infants (EPI), and 36 Very Premature Infants (VPI). The EPI group had significantly higher mean interleukin-6 and lactate dehydrogenase levels at birth and three days postnatally than the VPI group. C-reactive protein levels at three days were significantly higher in the VPI group. Umbilical cord inflammation and ROP severity were found to have a statistically significant positive correlation. Half of the EPIs had moderate to severe ROP, significantly more than in the VPI group. The duration of oxygen supplementation, mechanical ventilation, Continuous Positive Airway Pressure (CPAP), gestational age less than 28 weeks, and umbilical cord inflammation at or above stage 3 were significant risk factors for developing ROP stage 2 or above. Elevated CRP and IL-6 were also significantly associated with an increased risk of developing ROP stage 2 or above, highlighting their potential as biomarkers for ROP risk prediction. This study suggests a significant association between inflammatory markers and ROP development in extremely premature and very premature neonates. These findings could contribute to the identification of potential inflammatory biomarkers for ROP risk prediction, improving early diagnosis and intervention strategies for this condition.
Collapse
Affiliation(s)
- Claudia Ioana Borțea
- Department of Neonatology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Doctoral School, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Ileana Enatescu
- Department of Neonatology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Mirabela Dima
- Department of Neonatology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Manuela Pantea
- Department of Neonatology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Doctoral School, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Emil Radu Iacob
- Department of Pediatric Surgery, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Catalin Dumitru
- Department of Obstetrics and Gynecology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Alin Popescu
- Department of Obstetrics and Gynecology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Florina Stoica
- Department of Ophthalmology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Rodica Elena Heredea
- Department of Pathology, "Louis Turcanu" Children's Clinical Emergency Hospital, 300041 Timisoara, Romania
- Department of Clinical Practical Skills, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Daniela Iacob
- Department of Neonatology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| |
Collapse
|
16
|
杨 秋, 李 思, 郝 虎, 古 霞, 石 聪, 肖 昕, 蔡 尧. [Blood metabolites in preterm infants with retinopathy of prematurity based on tandem mass spectrometry: a preliminary study]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:140-146. [PMID: 36854689 PMCID: PMC9979382 DOI: 10.7499/j.issn.1008-8830.2209142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/17/2022] [Indexed: 03/03/2023]
Abstract
OBJECTIVES To study new biomarkers for the early diagnosis of retinopathy of prematurity (ROP) by analyzing the differences in blood metabolites based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) and metabolomics. METHODS Dried blood spots were collected from 21 infants with ROP (ROP group) and 21 infants without ROP (non-ROP group) who were hospitalized in the Sixth Affiliated Hospital of Sun Yat-sen University from January 2013 to December 2016. LC-MS/MS was used to measure the metabolites, and orthogonal partial least squares-discriminant analysis was used to search for differentially expressed metabolites and biomarkers. RESULTS There was a significant difference in blood metabolic profiles between the ROP and non-ROP groups. The pattern recognition analysis, Score-plot, and weight analysis obtained 10 amino acids with a relatively large difference. Further statistical analysis showed that the ROP group had significant increases in blood levels of glutamic acid, leucine, aspartic acid, ornithine, and glycine compared with the non-ROP group (P<0.05). The receiver operating characteristic curve analysis showed that glutamic acid and ornithine had the highest value in diagnosing ROP. CONCLUSIONS Blood metabolites in preterm infants with ROP are different from those without ROP. Glutamic acid and ornithine are the metabolic markers for diagnosing ROP. LC-MS/MS combined with metabolomics analysis has a potential application value in the early identification and diagnosis of ROP.
Collapse
Affiliation(s)
| | | | - 虎 郝
- 中山大学附属第六医院小儿遗传代谢病实验室,广东广州510655
| | | | - 聪聪 石
- 中山大学附属第六医院小儿遗传代谢病实验室,广东广州510655
| | - 昕 肖
- 中山大学附属第六医院小儿遗传代谢病实验室,广东广州510655
| | | |
Collapse
|