1
|
Chen J, Bartoš J, Boudichevskaia A, Voigt A, Rabanus-Wallace MT, Dreissig S, Tulpová Z, Šimková H, Macas J, Kim G, Buhl J, Bürstenbinder K, Blattner FR, Fuchs J, Schmutzer T, Himmelbach A, Schubert V, Houben A. The genetic mechanism of B chromosome drive in rye illuminated by chromosome-scale assembly. Nat Commun 2024; 15:9686. [PMID: 39516474 PMCID: PMC11549084 DOI: 10.1038/s41467-024-53799-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The genomes of many plants, animals, and fungi frequently comprise dispensable B chromosomes that rely upon various chromosomal drive mechanisms to counteract the tendency of non-essential genetic elements to be purged over time. The B chromosome of rye - a model system for nearly a century - undergoes targeted nondisjunction during first pollen mitosis, favouring segregation into the generative nucleus, thus increasing their numbers over generations. However, the genetic mechanisms underlying this process are poorly understood. Here, using a newly-assembled, ~430 Mb-long rye B chromosome pseudomolecule, we identify five candidate genes whose role as trans-acting moderators of the chromosomal drive is supported by karyotyping, chromosome drive analysis and comparative RNA-seq. Among them, we identify DCR28, coding a microtubule-associated protein related to cell division, and detect this gene also in the B chromosome of Aegilops speltoides. The DCR28 gene family is neo-functionalised and serially-duplicated with 15 B chromosome-located copies that are uniquely highly expressed in the first pollen mitosis of rye.
Collapse
Affiliation(s)
- Jianyong Chen
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - Anastassia Boudichevskaia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | - Anna Voigt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Mark Timothy Rabanus-Wallace
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- School of Agriculture, Forestry, and Ecosystem Science (SAFES), The University of Melbourne, Parkville, VIC, Australia
| | - Steven Dreissig
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Zuzana Tulpová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Gihwan Kim
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jonas Buhl
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Institute of Biology, Department of Plant Cell Biology, Philipps University Marburg, Marburg, Germany
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Institute of Biology, Department of Plant Cell Biology, Philipps University Marburg, Marburg, Germany
| | - Frank R Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Thomas Schmutzer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
| |
Collapse
|
2
|
Xu YH, Suo F, Zhang XR, Du TY, Hua Y, Jia GS, Zheng JX, Du LL. Evolutionary Modes of wtf Meiotic Driver Genes in Schizosaccharomyces pombe. Genome Biol Evol 2024; 16:evae221. [PMID: 39391964 PMCID: PMC11497594 DOI: 10.1093/gbe/evae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/22/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Killer meiotic drivers are a class of selfish genetic elements that bias inheritance in their favor by destroying meiotic progeny that do not carry them. How killer meiotic drivers evolve is not well understood. In the fission yeast, Schizosaccharomyces pombe, the largest gene family, known as the wtf genes, is a killer meiotic driver family that causes intraspecific hybrid sterility. Here, we investigate how wtf genes evolve using long-read-based genome assemblies of 31 distinct S. pombe natural isolates, which encompass the known genetic diversity of S. pombe. Our analysis, involving nearly 1,000 wtf genes in these isolates, yields a comprehensive portrayal of the intraspecific diversity of wtf genes. Leveraging single-nucleotide polymorphisms in adjacent unique sequences, we pinpoint wtf gene-containing loci that have recently undergone gene conversion events and infer their ancestral state. These events include the revival of wtf pseudogenes, lending support to the notion that gene conversion plays a role in preserving this gene family from extinction. Moreover, our investigation reveals that solo long terminal repeats of retrotransposons, frequently found near wtf genes, can act as recombination arms, influencing the upstream regulatory sequences of wtf genes. Additionally, our exploration of the outer boundaries of wtf genes uncovers a previously unrecognized type of directly oriented repeats flanking wtf genes. These repeats may have facilitated the early expansion of the wtf gene family in S. pombe. Our findings enhance the understanding of the mechanisms influencing the evolution of this killer meiotic driver gene family.
Collapse
Affiliation(s)
- Yan-Hui Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiao-Ran Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Tong-Yang Du
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yu Hua
- National Institute of Biological Sciences, Beijing 102206, China
| | - Guo-Song Jia
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jin-Xin Zheng
- National Institute of Biological Sciences, Beijing 102206, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
3
|
López Hernández JF, Rubinstein BY, Unckless RL, Zanders SE. Modeling the evolution of Schizosaccharomyces pombe populations with multiple killer meiotic drivers. G3 (BETHESDA, MD.) 2024; 14:jkae142. [PMID: 38938172 PMCID: PMC11491527 DOI: 10.1093/g3journal/jkae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Meiotic drivers are selfish genetic loci that can be transmitted to more than half of the viable gametes produced by a heterozygote. This biased transmission gives meiotic drivers an evolutionary advantage that can allow them to spread over generations until all members of a population carry the driver. This evolutionary power can also be exploited to modify natural populations using synthetic drivers known as "gene drives." Recently, it has become clear that natural drivers can spread within genomes to birth multicopy gene families. To understand intragenomic spread of drivers, we model the evolution of 2 or more distinct meiotic drivers in a population. We employ the wtf killer meiotic drivers from Schizosaccharomyces pombe, which are multicopy in all sequenced isolates, as models. We find that a duplicate wtf driver identical to the parent gene can spread in a population unless, or until, the original driver is fixed. When the duplicate driver diverges to be distinct from the parent gene, we find that both drivers spread to fixation under most conditions, but both drivers can be lost under some conditions. Finally, we show that stronger drivers make weaker drivers go extinct in most, but not all, polymorphic populations with absolutely linked drivers. These results reveal the strong potential for natural meiotic drive loci to duplicate and diverge within genomes. Our findings also highlight duplication potential as a factor to consider in the design of synthetic gene drives.
Collapse
Affiliation(s)
| | - Boris Y Rubinstein
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Sarah E Zanders
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Oberhofer G, Johnson ML, Ivy T, Antoshechkin I, Hay BA. Cleave and Rescue gamete killers create conditions for gene drive in plants. NATURE PLANTS 2024; 10:936-953. [PMID: 38886522 DOI: 10.1038/s41477-024-01701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/16/2024] [Indexed: 06/20/2024]
Abstract
Gene drive elements promote the spread of linked traits and can be used to change the composition or fate of wild populations. Cleave and Rescue (ClvR) drive elements sit at a fixed chromosomal position and include a DNA sequence-modifying enzyme such as Cas9/gRNAs that disrupts endogenous versions of an essential gene and a recoded version of the essential gene resistant to cleavage. ClvR spreads by creating conditions in which those lacking ClvR die because they lack functional versions of the essential gene. Here we demonstrate the essential features of the ClvR gene drive in the plant Arabidopsis thaliana through killing of gametes that fail to inherit a ClvR that targets the essential gene YKT61. Resistant alleles, which can slow or prevent drive, were not observed. Modelling shows plant ClvRs are robust to certain failure modes and can be used to rapidly drive population modification or suppression. Possible applications are discussed.
Collapse
Affiliation(s)
- Georg Oberhofer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michelle L Johnson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tobin Ivy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
5
|
Arter M, Keeney S. Divergence and conservation of the meiotic recombination machinery. Nat Rev Genet 2024; 25:309-325. [PMID: 38036793 DOI: 10.1038/s41576-023-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 12/02/2023]
Abstract
Sexually reproducing eukaryotes use recombination between homologous chromosomes to promote chromosome segregation during meiosis. Meiotic recombination is almost universally conserved in its broad strokes, but specific molecular details often differ considerably between taxa, and the proteins that constitute the recombination machinery show substantial sequence variability. The extent of this variation is becoming increasingly clear because of recent increases in genomic resources and advances in protein structure prediction. We discuss the tension between functional conservation and rapid evolutionary change with a focus on the proteins that are required for the formation and repair of meiotic DNA double-strand breaks. We highlight phylogenetic relationships on different time scales and propose that this remarkable evolutionary plasticity is a fundamental property of meiotic recombination that shapes our understanding of molecular mechanisms in reproductive biology.
Collapse
Affiliation(s)
- Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
Oberhofer G, Johnson ML, Ivy T, Antoshechkin I, Hay BA. Cleave and Rescue gamete killers create conditions for gene drive in plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.13.562303. [PMID: 37873352 PMCID: PMC10592828 DOI: 10.1101/2023.10.13.562303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Gene drive elements promote the spread of linked traits, even when their presence confers a fitness cost to carriers, and can be used to change the composition or fate of wild populations. Cleave and Rescue (ClvR) drive elements sit at a fixed chromosomal position and include a DNA sequence-modifying enzyme such as Cas9/gRNAs (the Cleaver/Toxin) that disrupts endogenous versions of an essential gene, and a recoded version of the essential gene resistant to cleavage (the Rescue/Antidote). ClvR spreads by creating conditions in which those lacking ClvR die because they lack functional versions of the essential gene. We demonstrate the essential features of ClvR gene drive in the plant Arabidopsis thaliana through killing of gametes that fail to inherit a ClvR that targets the essential gene YKT61, whose expression is required in male and female gametes for their survival. Resistant (uncleavable but functional) alleles, which can slow or prevent drive, were not observed. Modeling shows plant ClvRs are likely to be robust to certain failure modes and can be used to rapidly drive population modification or suppression. Possible applications in plant breeding, weed control, and conservation are discussed.
Collapse
Affiliation(s)
- Georg Oberhofer
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| | - Michelle L. Johnson
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| | - Tobin Ivy
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| | - Igor Antoshechkin
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| | - Bruce A. Hay
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| |
Collapse
|
7
|
Zheng JX, Du TY, Shao GC, Ma ZH, Jiang ZD, Hu W, Suo F, He W, Dong MQ, Du LL. Ubiquitination-mediated Golgi-to-endosome sorting determines the toxin-antidote duality of fission yeast wtf meiotic drivers. Nat Commun 2023; 14:8334. [PMID: 38097609 PMCID: PMC10721834 DOI: 10.1038/s41467-023-44151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
Killer meiotic drivers (KMDs) skew allele transmission in their favor by killing meiotic progeny not inheriting the driver allele. Despite their widespread presence in eukaryotes, the molecular mechanisms behind their selfish behavior are poorly understood. In several fission yeast species, single-gene KMDs belonging to the wtf gene family exert selfish killing by expressing a toxin and an antidote through alternative transcription initiation. Here we investigate how the toxin and antidote products of a wtf-family KMD gene can act antagonistically. Both the toxin and the antidote are multi-transmembrane proteins, differing only in their N-terminal cytosolic tails. We find that the antidote employs PY motifs (Leu/Pro-Pro-X-Tyr) in its N-terminal cytosolic tail to bind Rsp5/NEDD4 family ubiquitin ligases, which ubiquitinate the antidote. Mutating PY motifs or attaching a deubiquitinating enzyme transforms the antidote into a toxic protein. Ubiquitination promotes the transport of the antidote from the trans-Golgi network to the endosome, thereby preventing it from causing toxicity. A physical interaction between the antidote and the toxin enables the ubiquitinated antidote to translocate the toxin to the endosome and neutralize its toxicity. We propose that post-translational modification-mediated protein localization and/or activity changes may be a common mechanism governing the antagonistic duality of single-gene KMDs.
Collapse
Affiliation(s)
- Jin-Xin Zheng
- National Institute of Biological Sciences, Beijing, 102206, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Tong-Yang Du
- National Institute of Biological Sciences, Beijing, 102206, China
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Guang-Can Shao
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Zhu-Hui Ma
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Zhao-Di Jiang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Wen Hu
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Wanzhong He
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, 102206, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
8
|
Unckless RL. Meiotic drive, postzygotic isolation, and the Snowball Effect. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567107. [PMID: 38014228 PMCID: PMC10680770 DOI: 10.1101/2023.11.14.567107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
As populations diverge, they accumulate incompatibilities which reduce gene flow and facilitate the formation of new species. Simple models suggest that the genes that cause Dobzhansky-Muller incompatibilities should accumulate at least as fast as the square of the number of substitutions between taxa, the so-called snowball effect. We show, however, that in the special- but possibly common- case in which hybrid sterility is due primarily to cryptic meiotic (gametic) drive, the number of genes that cause postzygotic isolation may increase nearly linearly with the number of substitutions between species.
Collapse
Affiliation(s)
- Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| |
Collapse
|
9
|
Lai EC, Vogan AA. Proliferation and dissemination of killer meiotic drive loci. Curr Opin Genet Dev 2023; 82:102100. [PMID: 37625205 PMCID: PMC10900872 DOI: 10.1016/j.gde.2023.102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023]
Abstract
Killer meiotic drive elements are selfish genetic entities that manipulate the sexual cycle to promote their own inheritance via destructive means. Two broad classes are sperm killers, typical of animals and plants, and spore killers, which are present in ascomycete fungi. Killer meiotic drive systems operate via toxins that destroy or disable meiotic products bearing the alternative allele. To avoid suicidal autotargeting, cells that bear these selfish elements must either lack the toxin target, or express an antidote. Historically, these systems were presumed to require large nonrecombining haplotypes to link multiple functional interacting loci. However, recent advances on fungal spore killers reveal that numerous systems are enacted by single genes, and similar molecular genetic studies in Drosophila pinpoint individual loci that distort gamete sex. Notably, many meiotic drivers duplicate readily, forming gene families that can have complex interactions within and between species, and providing substrates for their rapid functional diversification. Here, we summarize the known families of meiotic drivers in fungi and fruit flies, and highlight shared principles about their evolution and proliferation that promote the spread of these noxious genes.
Collapse
Affiliation(s)
- Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, 430 East 67th St, ROC-10, New York, NY 10065, USA.
| | - Aaron A Vogan
- Institute of Organismal Biology, Uppsala University, Norbyvägen 18D, Uppsala 752 36, Sweden.
| |
Collapse
|
10
|
Brysch-Herzberg M, Jia GS, Sipiczki M, Seidel M, Li W, Assali I, Du LL. Schizosaccharomyces lindneri sp. nov., a fission yeast occurring in honey. Yeast 2023. [PMID: 37243506 DOI: 10.1002/yea.3857] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/29/2023] Open
Abstract
Two strains of fission yeast were isolated from honey. They differ from the type strain of Schizosaccharomyces octosporus by three substitutions in the D1/D2 domain of the nuclear 26S large subunit ribosomal RNA (rRNA) gene sequence, resulting in a 99.5% identity. In the internal transcribed spacer (ITS) region (consisting of ITS1, 5.8S rDNA, and ITS2), the strains differ from S. octosporus by 16 gaps and 91 substitutions, which is equivalent to an identity of 88.1%. Genome sequencing on one of the new strains revealed that the average nucleotide identity (ANI) between its genome and the reference genome of S. octosporus is 90.43% and there exist major genome rearrangements between the two genomes. Mating analysis revealed that S. octosporus and one of the new strains are completely reproductively separated. A strong prezygotic barrier exists and the few mating products consist of diploid hybrids that do not form recombinant ascospores. In the new strains, asci are either zygotic, arising from conjugation, or they develop without conjugation from asexual cells (azygotic). Compared to the currently recognized Schizosaccharomyces species, the spectrum of nutrients that are assimilated by the new strains is restricted. Of the 43 carbohydrates that were included in the physiological standard tests, only 7 were assimilated. According to the results of the genome sequence analysis, the mating trials, and the phenotypic characterization, the new species Schizosaccharomyces lindneri is described to accommodate the two strains (holotype: CBS 18203T and ex-type: MUCL 58363; MycoBank no.: MB 847838).
Collapse
Affiliation(s)
- Michael Brysch-Herzberg
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University of Applied Sciences, Heilbronn, Germany
| | - Guo-Song Jia
- National Institute of Biological Sciences, Beijing, China
| | - Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary
| | - Martin Seidel
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University of Applied Sciences, Heilbronn, Germany
| | - Wen Li
- National Institute of Biological Sciences, Beijing, China
| | - Imen Assali
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University of Applied Sciences, Heilbronn, Germany
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
11
|
Jia GS, Zhang WC, Liang Y, Liu XH, Rhind N, Pidoux A, Brysch-Herzberg M, Du LL. A high-quality reference genome for the fission yeast Schizosaccharomyces osmophilus. G3 (BETHESDA, MD.) 2023; 13:jkad028. [PMID: 36748990 PMCID: PMC10085805 DOI: 10.1093/g3journal/jkad028] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023]
Abstract
Fission yeasts are an ancient group of fungal species that diverged from each other from tens to hundreds of million years ago. Among them is the preeminent model organism Schizosaccharomyces pombe, which has significantly contributed to our understandings of molecular mechanisms underlying fundamental cellular processes. The availability of the genomes of S. pombe and 3 other fission yeast species S. japonicus, S. octosporus, and S. cryophilus has enabled cross-species comparisons that provide insights into the evolution of genes, pathways, and genomes. Here, we performed genome sequencing on the type strain of the recently identified fission yeast species S. osmophilus and obtained a complete mitochondrial genome and a nuclear genome assembly with gaps only at rRNA gene arrays. A total of 5,098 protein-coding nuclear genes were annotated and orthologs for more than 95% of them were identified. Genome-based phylogenetic analysis showed that S. osmophilus is most closely related to S. octosporus and these 2 species diverged around 16 million years ago. To demonstrate the utility of this S. osmophilus reference genome, we conducted cross-species comparative analyses of centromeres, telomeres, transposons, the mating-type region, Cbp1 family proteins, and mitochondrial genomes. These analyses revealed conservation of repeat arrangements and sequence motifs in centromere cores, identified telomeric sequences composed of 2 types of repeats, delineated relationships among Tf1/sushi group retrotransposons, characterized the evolutionary origins and trajectories of Cbp1 family domesticated transposases, and discovered signs of interspecific transfer of 2 types of mitochondrial selfish elements.
Collapse
Affiliation(s)
- Guo-Song Jia
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wen-Cai Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yue Liang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xi-Han Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Nicholas Rhind
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Alison Pidoux
- Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Michael Brysch-Herzberg
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University, Heilbronn 74081, Germany
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|