1
|
Kendrick AA, Nguyen KHV, Ma W, Karasmanis EP, Amaro RE, Reck-Peterson SL, Leschziner AE. Cryo-EM visualizes multiple steps of dynein's activation pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.28.615567. [PMID: 39416051 PMCID: PMC11482813 DOI: 10.1101/2024.09.28.615567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cytoplasmic dynein-1 (dynein) is an essential molecular motor controlled in part by autoinhibition. We recently identified a structure of partially autoinhibited dynein bound to Lis1, a key dynein regulator mutated in the neurodevelopmental disease lissencephaly. This structure provides an intermediate state in dynein's activation pathway; however, other structural information is needed to fully explain Lis1 function in dynein activation. Here, we used cryo-EM and samples incubated with ATP for different times to reveal novel conformations that we propose represent intermediate states in the dynein's activation pathway. We solved sixteen high-resolution structures, including seven distinct dynein and dynein-Lis1 structures from the same sample. Our data also support a model in which Lis1 relieves dynein autoinhibition by increasing its basal ATP hydrolysis rate and promoting conformations compatible with complex assembly and motility. Together, this analysis advances our understanding of dynein activation and the contribution of Lis1 to this process.
Collapse
Affiliation(s)
- Agnieszka A. Kendrick
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Current address: Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kendrick H. V. Nguyen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Wen Ma
- Department of Physics, University of Vermont, Burlington, VT, USA
| | - Eva P. Karasmanis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Samara L. Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Andres E. Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Ramos RL, De Heredia MMB, Zhang Y, Stout RF, Tindi JO, Wu L, Schwartz GJ, Botbol YM, Sidoli S, Poojari A, Rakowski-Anderson T, Shafit-Zagardo B. Patient-specific mutation of Dync1h1 in mice causes brain and behavioral deficits. Neurobiol Dis 2024; 199:106594. [PMID: 39025270 DOI: 10.1016/j.nbd.2024.106594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
AIMS Cytoplasmic dynein heavy chain (DYNC1H1) is a multi-subunit protein complex that provides motor force for movement of cargo on microtubules and traffics them back to the soma. In humans, mutations along the DYNC1H1 gene result in intellectual disabilities, cognitive delays, and neurologic and motor deficits. The aim of the study was to generate a mouse model to a newly identified de novo heterozygous DYNC1H1 mutation, within a functional ATPase domain (c9052C > T(P3018S)), identified in a child with motor deficits, and intellectual disabilities. RESULTS P3018S heterozygous (HET) knockin mice are viable; homozygotes are lethal. Metabolic and EchoMRI™ testing show that HET mice have a higher metabolic rate, are more active, and have less body fat compared to wildtype mice. Neurobehavioral studies show that HET mice perform worse when traversing elevated balance beams, and on the negative geotaxis test. Immunofluorescent staining shows neuronal migration abnormalities in the dorsal and lateral neocortex with heterotopia in layer I. Neuron-subtype specific transcription factors CUX1 and CTGF identified neurons from layers II/III and VI respectively in cortical layer I, and abnormal pyramidal neurons with MAP2+ dendrites projecting downward from the pial surface. CONCLUSION The HET mice are a good model for the motor deficits seen in the child, and highlights the importance of cytoplasmic dynein in the maintenance of cortical function and dendritic orientation relative to the pial surface. Our results are discussed in the context of other dynein mutant mice and in relation to clinical presentation in humans with DYNC1H1 mutations.
Collapse
Affiliation(s)
- Raddy L Ramos
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Riland Academic Health Center, Room 26, Old Westbury, NY 11568, United States of America
| | | | - Yongwei Zhang
- Cancer Center, Albert Einstein College of Medicine, 1301 Morris Park Ave, Price Building, Rm 269, Bronx, NY 10461, United States of America.
| | - Randy F Stout
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Riland Academic Health Center, Room 22, Old Westbury, NY 11568, United States of America.
| | - Jaafar O Tindi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Kennedy Center, Rm 501, 1410 Pelham Parkway S., Bronx, NY 10461, United States of America.
| | - Liching Wu
- Dept of Medicine, Albert Einstein College of Medicine, United States of America.
| | - Gary J Schwartz
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, United States of America.
| | - Yair M Botbol
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Forchheimer Building, Rm 520, Bronx, NY 10461, United States of America.
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein, United States of America.
| | - Ankita Poojari
- Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States of America.
| | - Tammy Rakowski-Anderson
- Institute for Animal Studies, Albert Einstein College of Medicine, Van Etten Building, Room 463, Bronx, NY 10461, United States of America.
| | - Bridget Shafit-Zagardo
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Forchheimer Building 514, Bronx, NY 10461, United States of America.
| |
Collapse
|
3
|
Kusakci E, Htet ZM, Zhao Y, Gillies JP, Reck-Peterson SL, Yildiz A. Lis1 slows force-induced detachment of cytoplasmic dynein from microtubules. Nat Chem Biol 2024; 20:521-529. [PMID: 37919547 PMCID: PMC11164236 DOI: 10.1038/s41589-023-01464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Lis1 is a key cofactor for the assembly of active cytoplasmic dynein complexes that transport cargo along microtubules. Lis1 binds to the AAA+ ring and stalk of dynein and slows dynein motility, but the underlying mechanism has remained unclear. Using single-molecule imaging and optical trapping assays, we investigated how Lis1 binding affects the motility and force generation of yeast dynein in vitro. We showed that Lis1 slows motility by binding to the AAA+ ring of dynein, not by serving as a roadblock or tethering dynein to microtubules. Lis1 binding also does not affect force generation, but it induces prolonged stalls and reduces the asymmetry in the force-induced detachment of dynein from microtubules. The mutagenesis of the Lis1-binding sites on the dynein stalk partially recovers this asymmetry but does not restore dynein velocity. These results suggest that Lis1-stalk interaction slows the detachment of dynein from microtubules by interfering with the stalk sliding mechanism.
Collapse
Affiliation(s)
- Emre Kusakci
- Graduate Group in Biophysics, University of California Berkeley, Berkeley, CA, USA
| | - Zaw Min Htet
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Yuanchang Zhao
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Physics Department, University of California Berkeley, Berkeley, CA, USA
| | - John P Gillies
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ahmet Yildiz
- Graduate Group in Biophysics, University of California Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
- Physics Department, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
4
|
Singh K, Lau CK, Manigrasso G, Gama JB, Gassmann R, Carter AP. Molecular mechanism of dynein-dynactin complex assembly by LIS1. Science 2024; 383:eadk8544. [PMID: 38547289 PMCID: PMC7615804 DOI: 10.1126/science.adk8544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/09/2024] [Indexed: 04/02/2024]
Abstract
Cytoplasmic dynein is a microtubule motor vital for cellular organization and division. It functions as a ~4-megadalton complex containing its cofactor dynactin and a cargo-specific coiled-coil adaptor. However, how dynein and dynactin recognize diverse adaptors, how they interact with each other during complex formation, and the role of critical regulators such as lissencephaly-1 (LIS1) protein (LIS1) remain unclear. In this study, we determined the cryo-electron microscopy structure of dynein-dynactin on microtubules with LIS1 and the lysosomal adaptor JIP3. This structure reveals the molecular basis of interactions occurring during dynein activation. We show how JIP3 activates dynein despite its atypical architecture. Unexpectedly, LIS1 binds dynactin's p150 subunit, tethering it along the length of dynein. Our data suggest that LIS1 and p150 constrain dynein-dynactin to ensure efficient complex formation.
Collapse
Affiliation(s)
- Kashish Singh
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Clinton K. Lau
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Giulia Manigrasso
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - José B. Gama
- Instituto de Investigação e Inovação em Saúde – i3S / Instituto de Biologia Molecular e Celular – IBMC, Universidade do Porto, 4200-135 Porto, Portugal
| | - Reto Gassmann
- Instituto de Investigação e Inovação em Saúde – i3S / Instituto de Biologia Molecular e Celular – IBMC, Universidade do Porto, 4200-135 Porto, Portugal
| | - Andrew P. Carter
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, UK
| |
Collapse
|
5
|
Garner MA, Hubbard MG, Boitet ER, Hubbard ST, Gade A, Ying G, Jones BW, Baehr W, Gross AK. NUDC is critical for rod photoreceptor function, maintenance, and survival. FASEB J 2024; 38:e23518. [PMID: 38441532 PMCID: PMC10917122 DOI: 10.1096/fj.202301641rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
NUDC (nuclear distribution protein C) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown. Here, we examined the role of NUDC in postmitotic rod photoreceptors by studying the consequences of a conditional NUDC knockout in mouse rods (rNudC-/- ). Loss of NUDC in rods led to complete photoreceptor cell death at 6 weeks of age. By 3 weeks of age, rNudC-/- function was diminished, and rhodopsin and mitochondria were mislocalized, consistent with dynein inhibition. Levels of outer segment proteins were reduced, but LIS1 (lissencephaly protein 1), a well-characterized dynein cofactor, was unaffected. Transmission electron microscopy revealed ultrastructural defects within the rods of rNudC-/- by 3 weeks of age. We investigated whether NUDC interacts with the actin modulator cofilin 1 (CFL1) and found that in rods, CFL1 is localized in close proximity to NUDC. In addition to its potential role in dynein trafficking within rods, loss of NUDC also resulted in increased levels of phosphorylated CFL1 (pCFL1), which would purportedly prevent depolymerization of actin. The absence of NUDC also induced an inflammatory response in Müller glia and microglia across the neural retina by 3 weeks of age. Taken together, our data illustrate the critical role of NUDC in actin cytoskeletal maintenance and dynein-mediated protein trafficking in a postmitotic rod photoreceptor.
Collapse
Affiliation(s)
- Mary Anne Garner
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Meredith G. Hubbard
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Evan R. Boitet
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Seth T. Hubbard
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Anushree Gade
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Guoxin Ying
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, 84132 USA
| | - Bryan W. Jones
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, 84132 USA
| | - Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, 84132 USA
| | - Alecia K. Gross
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| |
Collapse
|
6
|
Garner MA, Hubbard MG, Boitet ER, Hubbard ST, Gade A, Ying G, Jones BW, Baehr W, Gross AK. NUDC is critical for rod photoreceptor function, maintenance, and survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568878. [PMID: 38076848 PMCID: PMC10705250 DOI: 10.1101/2023.11.28.568878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
NUDC ( nu clear d istribution protein C) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown. Here, we examined the role of NUDC in postmitotic rod photoreceptors by studying the consequences of a conditional NUDC knockout in mouse rods (r NudC -/- ). Loss of NUDC in rods led to complete photoreceptor cell death at six weeks of age. By 3 weeks of age, r NudC -/- function was diminished, and rhodopsin and mitochondria were mislocalized, consistent with dynein inhibition. Levels of outer segment proteins were reduced, but LIS1 (lissencephaly protein 1), a well-characterized dynein cofactor, was unaffected. Transmission electron microscopy revealed ultrastructural defects within the rods of r NudC -/- by 3 weeks of age. We investigated whether NUDC interacts with the actin modulator cofilin 1 (CFL1) and found that in rods, CFL1 is localized in close proximity to NUDC. In addition to its potential role in dynein trafficking within rods, loss of NUDC also resulted in increased levels of phosphorylated CFL1 (pCFL1), which would purportedly prevent depolymerization of actin. Absence of NUDC also induced an inflammatory response in Müller glia and microglia across the neural retina by 3 weeks of age. Taken together, our data illustrate the critical role of NUDC in actin cytoskeletal maintenance and dynein-mediated protein trafficking in a postmitotic rod photoreceptor. Significance Statement Nuclear distribution protein C (NUDC) has been studied extensively as an essential protein for mitotic cell division. In this study, we discovered its expression and role in the postmitotic rod photoreceptor cell. In the absence of NUDC in mouse rods, we detected functional loss, protein mislocalization, and rapid retinal degeneration consistent with dynein inactivation. In the early phase of retinal degeneration, we observed ultrastructural defects and an upregulation of inflammatory markers suggesting additional, dynein-independent functions of NUDC.
Collapse
|
7
|
Zhao Y, Oten S, Yildiz A. Nde1 promotes Lis1-mediated activation of dynein. Nat Commun 2023; 14:7221. [PMID: 37940657 PMCID: PMC10632352 DOI: 10.1038/s41467-023-42907-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Cytoplasmic dynein drives the motility and force generation functions towards the microtubule minus end. The assembly of dynein with dynactin and a cargo adaptor in an active transport complex is facilitated by Lis1 and Nde1/Ndel1. Recent studies proposed that Lis1 relieves dynein from its autoinhibited conformation, but the physiological function of Nde1/Ndel1 remains elusive. Here, we investigate how human Nde1 and Lis1 regulate the assembly and subsequent motility of mammalian dynein using in vitro reconstitution and single molecule imaging. We find that Nde1 recruits Lis1 to autoinhibited dynein and promotes Lis1-mediated assembly of dynein-dynactin adaptor complexes. Nde1 can compete with the α2 subunit of platelet activator factor acetylhydrolase 1B (PAF-AH1B) for the binding of Lis1, which suggests that Nde1 may disrupt PAF-AH1B recruitment of Lis1 as a noncatalytic subunit, thus promoting Lis1 binding to dynein. Before the initiation of motility, the association of dynactin with dynein triggers the dissociation of Nde1 from dynein by competing against Nde1 binding to the dynein intermediate chain. Our results provide a mechanistic explanation for how Nde1 and Lis1 synergistically activate the dynein transport machinery.
Collapse
Affiliation(s)
- Yuanchang Zhao
- Physics Department, University of California, Berkeley, CA, 94709, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94709, USA
| | - Sena Oten
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94709, USA
| | - Ahmet Yildiz
- Physics Department, University of California, Berkeley, CA, 94709, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94709, USA.
- Biophysics Graduate Group, University of California, Berkeley, CA, 94709, USA.
| |
Collapse
|
8
|
Zhao Y, Oten S, Yildiz A. Nde1 Promotes Lis1-Mediated Activation of Dynein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542537. [PMID: 37292665 PMCID: PMC10246013 DOI: 10.1101/2023.05.26.542537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cytoplasmic dynein is the primary motor that drives the motility and force generation functions towards the microtubule minus end. The activation of dynein motility requires its assembly with dynactin and a cargo adaptor. This process is facilitated by two dynein-associated factors, Lis1 and Nde1/Ndel1. Recent studies proposed that Lis1 rescues dynein from its autoinhibited conformation, but the physiological function of Nde1/Ndel1 remains elusive. Here, we investigated how human Nde1 and Lis1 regulate the assembly and subsequent motility of the mammalian dynein/dynactin complex using in vitro reconstitution and single molecule imaging. We found that Nde1 promotes the assembly of active dynein complexes in two distinct ways. Nde1 competes with the α2 subunit of platelet activator factor acetylhydrolase (PAF-AH) 1B, which recruits Lis1 as a noncatalytic subunit and prevents its binding to dynein. Second, Nde1 recruits Lis1 to autoinhibited dynein and promotes Lis1-mediated assembly of dynein-dynactin-adaptor complexes. However, excess Nde1 inhibits dynein, presumably by competing against dynactin to bind the dynein intermediate chain. The association of dynactin with dynein triggers Nde1 dissociation before the initiation of dynein motility. Our results provide a mechanistic explanation for how Nde1 and Lis1 synergistically activate the dynein transport machinery.
Collapse
Affiliation(s)
- Yuanchang Zhao
- Physics Department, University of California, Berkeley, CA, USA, 94709
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA, 94709
| | - Sena Oten
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA, 94709
| | - Ahmet Yildiz
- Physics Department, University of California, Berkeley, CA, USA, 94709
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA, 94709
- Biophysics Graduate Group, University of California, Berkeley, CA, USA, 94709
| |
Collapse
|
9
|
Karasmanis EP, Reimer JM, Kendrick AA, Nguyen KHV, Rodriguez JA, Truong JB, Lahiri I, Reck-Peterson SL, Leschziner AE. Lis1 relieves cytoplasmic dynein-1 autoinhibition by acting as a molecular wedge. Nat Struct Mol Biol 2023; 30:1357-1364. [PMID: 37620585 PMCID: PMC10497415 DOI: 10.1038/s41594-023-01069-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/14/2023] [Indexed: 08/26/2023]
Abstract
Cytoplasmic dynein-1 transports intracellular cargo towards microtubule minus ends. Dynein is autoinhibited and undergoes conformational changes to form an active complex that consists of one or two dynein dimers, the dynactin complex, and activating adapter(s). The Lissencephaly 1 gene, LIS1, is genetically linked to the dynein pathway from fungi to mammals and is mutated in people with the neurodevelopmental disease lissencephaly. Lis1 is required for active dynein complexes to form, but how it enables this is unclear. Here, we present a structure of two yeast dynein motor domains with two Lis1 dimers wedged in-between. The contact sites between dynein and Lis1 in this structure, termed 'Chi,' are required for Lis1's regulation of dynein in Saccharomyces cerevisiae in vivo and the formation of active human dynein-dynactin-activating adapter complexes in vitro. We propose that this structure represents an intermediate in dynein's activation pathway, revealing how Lis1 relieves dynein's autoinhibited state.
Collapse
Affiliation(s)
- Eva P Karasmanis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Janice M Reimer
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Agnieszka A Kendrick
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kendrick H V Nguyen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jennifer A Rodriguez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joey B Truong
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Indrajit Lahiri
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Division of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Ton WD, Wang Y, Chai P, Beauchamp-Perez C, Flint NT, Lammers LG, Xiong H, Zhang K, Markus SM. Microtubule-binding-induced allostery triggers LIS1 dissociation from dynein prior to cargo transport. Nat Struct Mol Biol 2023; 30:1365-1379. [PMID: 37322240 PMCID: PMC10590275 DOI: 10.1038/s41594-023-01010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
The lissencephaly-related protein LIS1 is a critical regulator of cytoplasmic dynein that governs motor function and intracellular localization (for example, to microtubule plus-ends). Although LIS1 binding is required for dynein activity, its unbinding prior to initiation of cargo transport is equally important, since preventing dissociation leads to dynein dysfunction. To understand whether and how dynein-LIS1 binding is modulated, we engineered dynein mutants locked in a microtubule-bound (MT-B) or microtubule-unbound (MT-U) state. Whereas the MT-B mutant exhibits low LIS1 affinity, the MT-U mutant binds LIS1 with high affinity, and as a consequence remains almost irreversibly associated with microtubule plus-ends. We find that a monomeric motor domain is sufficient to exhibit these opposing LIS1 affinities, and that this is evolutionarily conserved between yeast and humans. Three cryo-EM structures of human dynein with and without LIS1 reveal microtubule-binding induced conformational changes responsible for this regulation. Our work reveals key biochemical and structural insight into LIS1-mediated dynein activation.
Collapse
Affiliation(s)
- William D Ton
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Yue Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | | - Nicholas T Flint
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Lindsay G Lammers
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Hao Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| | - Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
11
|
Lau CK. New pieces for the Lis1-dynein puzzle. Nat Struct Mol Biol 2023; 30:1244-1246. [PMID: 37700119 DOI: 10.1038/s41594-023-01084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Affiliation(s)
- Clinton K Lau
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Reimer JM, DeSantis ME, Reck-Peterson SL, Leschziner AE. Structures of human dynein in complex with the lissencephaly 1 protein, LIS1. eLife 2023; 12:84302. [PMID: 36692009 PMCID: PMC9889085 DOI: 10.7554/elife.84302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/08/2023] [Indexed: 01/25/2023] Open
Abstract
The lissencephaly 1 protein, LIS1, is mutated in type-1 lissencephaly and is a key regulator of cytoplasmic dynein-1. At a molecular level, current models propose that LIS1 activates dynein by relieving its autoinhibited form. Previously we reported a 3.1 Å structure of yeast dynein bound to Pac1, the yeast homologue of LIS1, which revealed the details of their interactions (Gillies et al., 2022). Based on this structure, we made mutations that disrupted these interactions and showed that they were required for dynein's function in vivo in yeast. We also used our yeast dynein-Pac1 structure to design mutations in human dynein to probe the role of LIS1 in promoting the assembly of active dynein complexes. These mutations had relatively mild effects on dynein activation, suggesting that there may be differences in how dynein and Pac1/LIS1 interact between yeast and humans. Here, we report cryo-EM structures of human dynein-LIS1 complexes. Our new structures reveal the differences between the yeast and human systems, provide a blueprint to disrupt the human dynein-LIS1 interactions more accurately, and map type-1 lissencephaly disease mutations, as well as mutations in dynein linked to malformations of cortical development/intellectual disability, in the context of the dynein-LIS1 complex.
Collapse
Affiliation(s)
- Janice M Reimer
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Morgan E DeSantis
- Department of Molecular, Cellular and Developmental Biology, University of MichiganAnn ArborUnited States
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Department of Cell and Developmental Biology, University of California, San DiegoLa JollaUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Department of Molecular Biology, University of California, San DiegoLa JollaUnited States
| |
Collapse
|