1
|
Tu JC, Millar PR, Strain JF, Eck A, Adeyemo B, Snyder AZ, Daniels A, Karch C, Huey ED, McDade E, Day GS, Yakushev I, Hassenstab J, Morris J, Llibre-Guerra JJ, Ibanez L, Jucker M, Mendez PC, Perrin RJ, Benzinger TLS, Jack CR, Betzel R, Ances BM, Eggebrecht AT, Gordon BA, Wheelock MD. Increasing hub disruption parallels dementia severity in autosomal dominant Alzheimer's disease. Netw Neurosci 2024; 8:1265-1290. [PMID: 39735502 PMCID: PMC11674321 DOI: 10.1162/netn_a_00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/23/2024] [Indexed: 12/31/2024] Open
Abstract
Hub regions in the brain, recognized for their roles in ensuring efficient information transfer, are vulnerable to pathological alterations in neurodegenerative conditions, including Alzheimer's disease (AD). Computational simulations and animal experiments have hinted at the theory of activity-dependent degeneration as the cause of this hub vulnerability. However, two critical issues remain unresolved. First, past research has not clearly distinguished between two scenarios: hub regions facing a higher risk of connectivity disruption (targeted attack) and all regions having an equal risk (random attack). Second, human studies offering support for activity-dependent explanations remain scarce. We refined the hub disruption index to demonstrate a hub disruption pattern in functional connectivity in autosomal dominant AD that aligned with targeted attacks. This hub disruption is detectable even in preclinical stages, 12 years before the expected symptom onset and is amplified alongside symptomatic progression. Moreover, hub disruption was primarily tied to regional differences in global connectivity and sequentially followed changes observed in amyloid-beta positron emission tomography cortical markers, consistent with the activity-dependent degeneration explanation. Taken together, our findings deepen the understanding of brain network organization in neurodegenerative diseases and could be instrumental in refining diagnostic and targeted therapeutic strategies for AD in the future.
Collapse
Affiliation(s)
- Jiaxin Cindy Tu
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Peter R. Millar
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeremy F. Strain
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew Eck
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Abraham Z. Snyder
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Alisha Daniels
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Celeste Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Edward D. Huey
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Gregory S. Day
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Igor Yakushev
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Jason Hassenstab
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - John Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Laura Ibanez
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | - Richard J. Perrin
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Beau M. Ances
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Adam T. Eggebrecht
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Brian A. Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Muriah D. Wheelock
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
2
|
Kostović I. Development of the basic architecture of neocortical circuitry in the human fetus as revealed by the coupling spatiotemporal pattern of synaptogenesis along with microstructure and macroscale in vivo MR imaging. Brain Struct Funct 2024; 229:2339-2367. [PMID: 39102068 PMCID: PMC11612014 DOI: 10.1007/s00429-024-02838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
In humans, a quantifiable number of cortical synapses appears early in fetal life. In this paper, we present a bridge across different scales of resolution and the distribution of synapses across the transient cytoarchitectonic compartments: marginal zone (MZ), cortical plate (CP), subplate (SP), and in vivo MR images. The tissue of somatosensory cortex (7-26 postconceptional weeks (PCW)) was prepared for electron microscopy, and classified synapses with a determined subpial depth were used for creating histograms matched to the histological sections immunoreacted for synaptic markers and aligned to in vivo MR images (1.5 T) of corresponding fetal ages (maternal indication). Two time periods and laminar patterns of synaptogenesis were identified: an early and midfetal two-compartmental distribution (MZ and SP) and a late fetal three-compartmental distribution (CP synaptogenesis). During both periods, a voluminous, synapse-rich SP was visualized on the in vivo MR. Another novel finding concerns the phase of secondary expansion of the SP (13 PCW), where a quantifiable number of synapses appears in the upper SP. This lamina shows a T2 intermediate signal intensity below the low signal CP. In conclusion, the early fetal appearance of synapses shows early differentiation of putative genetic mechanisms underlying the synthesis, transport and assembly of synaptic proteins. "Pioneering" synapses are likely to play a morphogenetic role in constructing of fundamental circuitry architecture due to interaction between neurons. They underlie spontaneous, evoked, and resting state activity prior to ex utero experience. Synapses can also mediate genetic and environmental triggers, adversely altering the development of cortical circuitry and leading to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
3
|
Shafee R, Moraczewski D, Liu S, Mallard T, Thomas A, Raznahan A. A sex-stratified analysis of the genetic architecture of human brain anatomy. Nat Commun 2024; 15:8041. [PMID: 39271676 PMCID: PMC11399304 DOI: 10.1038/s41467-024-52244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Large biobanks have dramatically advanced our understanding of genetic influences on human brain anatomy. However, most studies have combined rather than compared male and female participants. Here we screen for sex differences in the common genetic architecture of over 1000 neuroanatomical phenotypes in the UK Biobank and establish a general concordance between male and female participants in heritability estimates, genetic correlations, and variant-level effects. Notable exceptions include higher mean heritability in the female group for regional volume and surface area phenotypes; between-sex genetic correlations that are significantly below 1 in the insula and parietal cortex; and a common variant with stronger effect in male participants mapping to RBFOX1 - a gene linked to multiple neuropsychiatric disorders more common in men. This work suggests that common variant influences on human brain anatomy are largely consistent between males and females, with a few exceptions that will guide future research in growing datasets.
Collapse
Affiliation(s)
- Rebecca Shafee
- Section on Developmental Neurogenomics, Human Genetics Branch, NIMH Intramural Research Program, NIH, Bethesda, MD, USA.
| | | | - Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, NIMH Intramural Research Program, NIH, Bethesda, MD, USA
| | - Travis Mallard
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, USA
| | - Adam Thomas
- Data Science and Sharing Team, NIMH, NIH, Bethesda, MD, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, NIMH Intramural Research Program, NIH, Bethesda, MD, USA.
| |
Collapse
|
4
|
Wong MMK, Sha Z, Lütje L, Kong XZ, van Heukelum S, van de Berg WDJ, Jonkman LE, Fisher SE, Francks C. The neocortical infrastructure for language involves region-specific patterns of laminar gene expression. Proc Natl Acad Sci U S A 2024; 121:e2401687121. [PMID: 39133845 PMCID: PMC11348331 DOI: 10.1073/pnas.2401687121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/27/2024] [Indexed: 08/29/2024] Open
Abstract
The language network of the human brain has core components in the inferior frontal cortex and superior/middle temporal cortex, with left-hemisphere dominance in most people. Functional specialization and interconnectivity of these neocortical regions is likely to be reflected in their molecular and cellular profiles. Excitatory connections between cortical regions arise and innervate according to layer-specific patterns. Here, we generated a gene expression dataset from human postmortem cortical tissue samples from core language network regions, using spatial transcriptomics to discriminate gene expression across cortical layers. Integration of these data with existing single-cell expression data identified 56 genes that showed differences in laminar expression profiles between the frontal and temporal language cortex together with upregulation in layer II/III and/or layer V/VI excitatory neurons. Based on data from large-scale genome-wide screening in the population, DNA variants within these 56 genes showed set-level associations with interindividual variation in structural connectivity between the left-hemisphere frontal and temporal language cortex, and with the brain-related disorders dyslexia and schizophrenia which often involve affected language. These findings identify region-specific patterns of laminar gene expression as a feature of the brain's language network.
Collapse
Affiliation(s)
- Maggie M. K. Wong
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525XD, The Netherlands
| | - Zhiqiang Sha
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525XD, The Netherlands
| | - Lukas Lütje
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525XD, The Netherlands
| | - Xiang-Zhen Kong
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525XD, The Netherlands
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou310058, China
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou311121, China
| | - Sabrina van Heukelum
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525XD, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen6525 GA, The Netherlands
| | - Wilma D. J. van de Berg
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Location Vrije Universiteit Amsterdam, Amsterdam1007 MB, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam1007 MB, The Netherlands
| | - Laura E. Jonkman
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Location Vrije Universiteit Amsterdam, Amsterdam1007 MB, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam1007 MB, The Netherlands
- Brain Imaging, Amsterdam Neuroscience, Amsterdam1007 MB, The Netherlands
| | - Simon E. Fisher
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525XD, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen6525 GA, The Netherlands
| | - Clyde Francks
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525XD, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen6525 GA, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| |
Collapse
|
5
|
Tu JC, Millar PR, Strain JF, Eck A, Adeyemo B, Daniels A, Karch C, Huey ED, McDade E, Day GS, Yakushev I, Hassenstab J, Morris J, Llibre-Guerra JJ, Ibanez L, Jucker M, Mendez PC, Bateman RJ, Perrin RJ, Benzinger T, Jack CR, Betzel R, Ances BM, Eggebrecht AT, Gordon BA, Wheelock MD. Increasing hub disruption parallels dementia severity in autosomal dominant Alzheimer disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.29.564633. [PMID: 37961586 PMCID: PMC10634945 DOI: 10.1101/2023.10.29.564633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Hub regions in the brain, recognized for their roles in ensuring efficient information transfer, are vulnerable to pathological alterations in neurodegenerative conditions, including Alzheimer Disease (AD). Given their essential role in neural communication, disruptions to these hubs have profound implications for overall brain network integrity and functionality. Hub disruption, or targeted impairment of functional connectivity at the hubs, is recognized in AD patients. Computational models paired with evidence from animal experiments hint at a mechanistic explanation, suggesting that these hubs may be preferentially targeted in neurodegeneration, due to their high neuronal activity levels-a phenomenon termed "activity-dependent degeneration". Yet, two critical issues were unresolved. First, past research hasn't definitively shown whether hub regions face a higher likelihood of impairment (targeted attack) compared to other regions or if impairment likelihood is uniformly distributed (random attack). Second, human studies offering support for activity-dependent explanations remain scarce. We applied a refined hub disruption index to determine the presence of targeted attacks in AD. Furthermore, we explored potential evidence for activity-dependent degeneration by evaluating if hub vulnerability is better explained by global connectivity or connectivity variations across functional systems, as well as comparing its timing relative to amyloid beta deposition in the brain. Our unique cohort of participants with autosomal dominant Alzheimer Disease (ADAD) allowed us to probe into the preclinical stages of AD to determine the hub disruption timeline in relation to expected symptom emergence. Our findings reveal a hub disruption pattern in ADAD aligned with targeted attacks, detectable even in pre-clinical stages. Notably, the disruption's severity amplified alongside symptomatic progression. Moreover, since excessive local neuronal activity has been shown to increase amyloid deposition and high connectivity regions show high level of neuronal activity, our observation that hub disruption was primarily tied to regional differences in global connectivity and sequentially followed changes observed in Aβ PET cortical markers is consistent with the activity-dependent degeneration model. Intriguingly, these disruptions were discernible 8 years before the expected age of symptom onset. Taken together, our findings not only align with the targeted attack on hubs model but also suggest that activity-dependent degeneration might be the cause of hub vulnerability. This deepened understanding could be instrumental in refining diagnostic techniques and developing targeted therapeutic strategies for AD in the future.
Collapse
Affiliation(s)
- Jiaxin Cindy Tu
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Peter R Millar
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Jeremy F Strain
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Andrew Eck
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Babatunde Adeyemo
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Alisha Daniels
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Celeste Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Edward D Huey
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, 02912
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Gregory S Day
- Department of Neurology, Mayo Clinic College of Medicine, Jacksonville, FL, USA, 32224
| | - Igor Yakushev
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany, 81675
| | - Jason Hassenstab
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - John Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Jorge J Llibre-Guerra
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Laura Ibanez
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA, 63108
- NeuroGenomics and Informatics Center, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany, 72076
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany, 72076
| | | | - Randell J Bateman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Richard J Perrin
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Tammie Benzinger
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, USA 55905
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN USA, 47405
| | - Beau M Ances
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Adam T Eggebrecht
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Brian A Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Muriah D Wheelock
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| |
Collapse
|