1
|
Ren Q, Zhang G, Dong C, Li Z, Zhou D, Huang L, Li W, Huang G, Yan J. Parental Folate Deficiency Inhibits Proliferation and Increases Apoptosis of Neural Stem Cells in Rat Offspring: Aggravating Telomere Attrition as a Potential Mechanism. Nutrients 2023; 15:2843. [PMID: 37447170 DOI: 10.3390/nu15132843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The effect of maternal folate status on the fetal central nervous system (CNS) is well recognized, while evidence is emerging that such an association also exists between fathers and offspring. The biological functions of telomeres and telomerase are also related to neural cell proliferation and apoptosis. The study aimed to investigate the effect of parental folate deficiency on the proliferation and apoptosis of neural stem cells (NSCs) in neonatal offspring and the role of telomeres in this effect. In this study, rats were divided into four groups: maternal folate-deficient and paternal folate-deficient diet (D-D) group; maternal folate-deficient and paternal folate-normal diet (D-N) group; maternal folate-normal and paternal folate-deficient diet (N-D) group; and the maternal folate-normal and paternal folate-normal diet (N-N) group. The offspring were sacrificed at postnatal day 0 (PND0), and NSCs were cultured from the hippocampus and striatum tissues of offspring for future assay. The results revealed that parental folate deficiency decreased folate levels, increased homocysteine (Hcy) levels of the offspring's brain tissue, inhibited proliferation, increased apoptosis, shortened telomere length, and aggravated telomere attrition of offspring NSCs in vivo and in vitro. In vitro experiments further showed that offspring NSCs telomerase activity was inhibited due to parental folate deficiency. In conclusion, parental folate deficiency inhibited the proliferation and increased apoptosis of offspring NSCs, maternal folate deficiency had more adverse effects than paternal, and the mechanisms may involve the telomere attrition of NSCs.
Collapse
Affiliation(s)
- Qinghan Ren
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Guoquan Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Cuixia Dong
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Dezheng Zhou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Li Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Jing Yan
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
- Department of Social Medicine and Health Administration, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
2
|
Li J, Liu HT, Zhao J, Chen HJ. Telomerase reverse transcriptase (TERT) promotes neurogenesis after hypoxic-ischemic brain damage in neonatal rats. Neurol Res 2022; 44:819-829. [PMID: 35400306 DOI: 10.1080/01616412.2022.2056339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jiao Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Hai-Ting Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Jing Zhao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Hong-Ju Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Ding L, Gao Q, Xu Z, Cai L, Chen S, Zhang X, Cao P, Chen G. An Inter-Supplementary Biohybrid System Based on Natural Killer Cells for the Combinational Immunotherapy and Virotherapy of Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103470. [PMID: 34747156 PMCID: PMC8805568 DOI: 10.1002/advs.202103470] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/12/2021] [Indexed: 05/05/2023]
Abstract
Oncolytic adenoviruses (Ads) have gained great attention in cancer therapy because they cause direct cytolytic infection and indirectly induce antitumor immunity. However, their efficacy is compromised by host antiviral immune response, poor tumor delivery, and the immunosuppressive tumor microenvironment (TME). Here, a natural killer (NK) cell-mediated Ad delivery system (Ad@NK) is generated by harnessing the merits of the two components for combinational immunotherapy and virotherapy of cancer. In this biohybrid system, NK cells with a tumor-homing tropism act as bioreactors and shelters for the loading, protection, replication, amplification, and release of Ads, thereby leading to a highly efficient systemic tumor-targeted delivery. As feedback, Ad infection offers NK cells an enhanced antitumor immunity by activating type I interferon signaling in a STAT4-granzyme B-dependent manner. Moreover, it is found that the Ad@NK system can relieve immunosuppression in the TME by promoting the maturation of dendritic cells and the polarization of macrophages to M1 phenotype. Both in vitro and in vivo data indicate the excellent antitumor and antimetastatic functions of Ad@NKs by destroying tumor cells, inducing immunogenic cell death, and immunomodulating TME. This work provides a clinical basis for improved oncolytic virotherapy in combination with NK cell therapy based on the inter-supplementary biohybrid system.
Collapse
Affiliation(s)
- Li Ding
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Qingqing Gao
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
- Institute of Comparative MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Zhuobin Xu
- Institute of Translational MedicineMedical CollegeYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Liangliang Cai
- Institute of Translational MedicineMedical CollegeYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Sujuan Chen
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
- Institute of Comparative MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Xinyue Zhang
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineSchool of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023P. R. China
| | - Gang Chen
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
- Institute of Comparative MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityYangzhouJiangsu225009P. R. China
| |
Collapse
|
4
|
Wang X, Ma Y, Xu R, Ma J, Zhang H, Qi S, Xu J, Qin X, Zhang H, Liu C, Chen J, Li B, Yang H, Saijilafu. c‐Myc controls the fate of neural progenitor cells during cerebral cortex development. J Cell Physiol 2019; 235:4011-4021. [PMID: 31625158 DOI: 10.1002/jcp.29297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/30/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Xiu‐Li Wang
- Department of Orthopaedics The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University Suzhou Jiangsu China
| | - Yan‐Xia Ma
- Department of Orthopaedics The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University Suzhou Jiangsu China
| | - Ren‐Jie Xu
- Department of Orthopaedics The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University Suzhou Jiangsu China
- Department of Orthopaedics Suzhou Municipal Hospital/The Affiliated Hospital of Nanjing Medical University Suzhou Jiangsu China
| | - Jin‐Jin Ma
- Department of Orthopaedics The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University Suzhou Jiangsu China
| | - Hong‐Cheng Zhang
- Department of Orthopaedics The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University Suzhou Jiangsu China
| | - Shi‐Bin Qi
- Department of Orthopaedics The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University Suzhou Jiangsu China
| | - Jin‐Hui Xu
- Department of Orthopaedics The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University Suzhou Jiangsu China
| | - Xu‐Zhen Qin
- Department of Orthopaedics The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University Suzhou Jiangsu China
| | - Hao‐Nan Zhang
- Department of Orthopaedics The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University Suzhou Jiangsu China
| | - Chang‐Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Science Beijing China
- Savaid Medical School University of Chinese Academy of Sciences Beijing China
| | - Jian‐Quan Chen
- Department of Orthopaedics The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University Suzhou Jiangsu China
| | - Bin Li
- Department of Orthopaedics The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University Suzhou Jiangsu China
| | - Hui‐Lin Yang
- Department of Orthopaedics The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University Suzhou Jiangsu China
| | - Saijilafu
- Department of Orthopaedics The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University Suzhou Jiangsu China
| |
Collapse
|
5
|
Telomerase Reverse Transcriptase and p53 Regulate Mammalian Peripheral Nervous System and CNS Axon Regeneration Downstream of c-Myc. J Neurosci 2019; 39:9107-9118. [PMID: 31597725 DOI: 10.1523/jneurosci.0419-19.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/04/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
Although several genes have been identified to promote axon regeneration in the CNS, our understanding of the molecular mechanisms by which mammalian axon regeneration is regulated is still limited and fragmented. Here by using female mouse sensory axon and optic nerve regeneration as model systems, we reveal an unexpected role of telomerase reverse transcriptase (TERT) in regulation of axon regeneration. We also provide evidence that TERT and p53 act downstream of c-Myc to control sensory axon regeneration. More importantly, overexpression of p53 in sensory neurons and retinal ganglion cells is sufficient to promote sensory axon and optic never regeneration, respectively. The study reveals a novel c-Myc-TERT-p53 signaling pathway, expanding horizons for novel approaches promoting CNS axon regeneration.SIGNIFICANCE STATEMENT Despite significant progress during the past decade, our understanding of the molecular mechanisms by which mammalian CNS axon regeneration is regulated is still fragmented. By using sensory axon and optic nerve regeneration as model systems, the study revealed an unexpected role of telomerase reverse transcriptase (TERT) in regulation of axon regeneration. The results also delineated a c-Myc-TERT-p53 pathway in controlling axon growth. Last, our results demonstrated that p53 alone was sufficient to promote sensory axon and optic nerve regeneration in vivo Collectively, the study not only revealed a new mechanisms underlying mammalian axon regeneration, but also expanded the pool of potential targets that can be manipulated to enhance CNS axon regeneration.
Collapse
|
6
|
Liu MY, Nemes A, Zhou QG. The Emerging Roles for Telomerase in the Central Nervous System. Front Mol Neurosci 2018; 11:160. [PMID: 29867352 PMCID: PMC5964194 DOI: 10.3389/fnmol.2018.00160] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
Telomerase, a specialized ribonucleoprotein enzyme complex, maintains telomere length at the 3′ end of chromosomes, and functions importantly in stem cells, cancer and aging. Telomerase exists in neural stem cells (NSCs) and neural progenitor cells (NPCs), at a high level in the developing and adult brains of humans and rodents. Increasing studies have demonstrated that telomerase in NSCs/NPCs plays important roles in cell proliferation, neuronal differentiation, neuronal survival and neuritogenesis. In addition, recent works have shown that telomerase reverse transcriptase (TERT) can protect newborn neurons from apoptosis and excitotoxicity. However, to date, the link between telomerase and diseases in the central nervous system (CNS) is not well reviewed. Here, we analyze the evidence and summarize the important roles of telomerase in the CNS. Understanding the roles of telomerase in the nervous system is not only important to gain further insight into the process of the neural cell life cycle but would also provide novel therapeutic applications in CNS diseases such as neurodegenerative condition, mood disorders, aging and other ailments.
Collapse
Affiliation(s)
- Meng-Ying Liu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing, China.,The Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, China
| | - Ashley Nemes
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing, China.,Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
7
|
Kim KC, Cho KS, Yang SM, Gonzales EL, Valencia S, Eun PH, Choi CS, Mabunga DF, Kim JW, Noh JK, Kim HJ, Jeon SJ, Han SH, Bahn GH, Shin CY. Sex Differences in Autism-Like Behavioral Phenotypes and Postsynaptic Receptors Expression in the Prefrontal Cortex of TERT Transgenic Mice. Biomol Ther (Seoul) 2017; 25:374-382. [PMID: 28208013 PMCID: PMC5499615 DOI: 10.4062/biomolther.2016.242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/24/2016] [Accepted: 12/06/2016] [Indexed: 11/05/2022] Open
Abstract
Autism spectrum disorder (ASD) remains unexplained and untreated despite the high attention of research in recent years. Aside from its various characteristics is the baffling male preponderance over the female population. Using a validated animal model of ASD which is the telomerase reverse transcriptase overexpressing mice (TERT-tg), we conducted ASD-related behavioral assessments and protein expression experiments to mark the difference between male and females of this animal model. After statistically analyzing the results, we found significant effects of TERT overexpression in sociability, social novelty preference, anxiety, nest building, and electroseizure threshold in the males but not their female littermates. Along these differences are the male-specific increased expressions of postsynaptic proteins which are the NMDA and AMPA receptors in the prefrontal cortex. The vGluT1 presynaptic proteins, but not GAD, were upregulated in both sexes of TERT-tg mice, although it is more significantly pronounced in the male group. Here, we confirmed that the behavioral effect of TERT overexpression in mice was male-specific, suggesting that the aberration of this gene and its downstream pathways preferentially affect the functional development of the male brain, consistent with the male preponderance in ASD.
Collapse
Affiliation(s)
- Ki Chan Kim
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyu Suk Cho
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Min Yang
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Schley Valencia
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Pyeong Hwa Eun
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Chang Soon Choi
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Darine Froy Mabunga
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji-Woon Kim
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Judy Kyoungju Noh
- College of Human Ecology, Cornell University, Ithaca, New York 14853, United States of America
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Se Jin Jeon
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seol-Heui Han
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Geon Ho Bahn
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chan Young Shin
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
DeCarolis NA, Kirby ED, Wyss-Coray T, Palmer TD. The Role of the Microenvironmental Niche in Declining Stem-Cell Functions Associated with Biological Aging. Cold Spring Harb Perspect Med 2015; 5:5/12/a025874. [PMID: 26627453 DOI: 10.1101/cshperspect.a025874] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging is strongly correlated with decreases in neurogenesis, the process by which neural stem and progenitor cells proliferate and differentiate into new neurons. In addition to stem-cell-intrinsic factors that change within the aging stem-cell pool, recent evidence emphasizes new roles for systemic and microenvironmental factors in modulating the neurogenic niche. This article focuses on new insights gained through the use of heterochronic parabiosis models, in which an old mouse and a young circulatory system are joined. By studying the brains of both young and old mice, researchers are beginning to uncover circulating proneurogenic "youthful" factors and "aging" factors that decrease stem-cell activity and neurogenesis. Ultimately, the identification of factors that influence stem-cell aging may lead to strategies that slow or even reverse age-related decreases in neural-stem-cell (NSC) function and neurogenesis.
Collapse
Affiliation(s)
- Nathan A DeCarolis
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Elizabeth D Kirby
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305 Center for Tissue Regeneration, Repair, and Restoration, Veterans Administration, Palo Alto Health Care Systems, Palo Alto, California 94304
| | - Theo D Palmer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305 Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
9
|
Wolkowitz OM, Mellon SH, Lindqvist D, Epel ES, Blackburn EH, Lin J, Reus VI, Burke H, Rosser R, Mahan L, Mackin S, Yang T, Weiner M, Mueller S. PBMC telomerase activity, but not leukocyte telomere length, correlates with hippocampal volume in major depression. Psychiatry Res 2015; 232:58-64. [PMID: 25773002 PMCID: PMC4404215 DOI: 10.1016/j.pscychresns.2015.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/02/2014] [Accepted: 01/09/2015] [Indexed: 11/29/2022]
Abstract
Accelerated cell aging, indexed in peripheral leukocytes by telomere shortness and in peripheral blood mononuclear cells (PBMCs) by telomerase activity, has been reported in several studies of major depressive disorder (MDD). However, the relevance of these peripheral measures for brain indices that are presumably more directly related to MDD pathophysiology is unknown. In this study, we explored the relationship between PBMC telomerase activity and leukocyte telomere length and magnetic resonance imaging-estimated hippocampal volume in un-medicated depressed individuals and healthy controls. We predicted that, to the extent peripheral and central telomerase activity are directly related, PBMC telomerase activity would be positively correlated with hippocampal volume, perhaps due to hippocampal telomerase-associated neurogenesis, neuroprotection or neurotrophic facilitation, and that this effect would be clearer in individuals with increased PBMC telomerase activity, as previously reported in un-medicated MDD. We did not have specific hypotheses regarding the relationship between leukocyte telomere length and hippocampal volume, due to conflicting reports in the published literature. We found, in 25 un-medicated MDD subjects, that PBMC telomerase activity was significantly positively correlated with hippocampal volume; this relationship was not observed in 18 healthy controls. Leukocyte telomere length was not significantly related to hippocampal volume in either group (19 unmedicated MDD subjects and 17 healthy controls). Although the nature of the relationship between peripheral telomerase activity and telomere length and the hippocampus is unclear, these preliminary data are consistent with the possibility that PBMC telomerase activity indexes, and may provide a novel window into, hippocampal neuroprotection and/or neurogenesis in MDD.
Collapse
Affiliation(s)
- Owen M. Wolkowitz
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
,Corresponding author: Dept. of Psychiatry, UCSF School of Medicine, 401 Parnassus Ave., San Francisco, CA 94143-0983, USA. Tel.: +1 (415) 476-7433; Fax: +1 (415) 502-2661;
| | - Synthia H. Mellon
- Department of OBGYN and Reproductive Endocrinology, UCSF School of Medicine, San Francisco, CA, USA
| | - Daniel Lindqvist
- Department of Clinical Sciences, Section for Psychiatry, Lund University, Lund, Sweden
| | - Elissa S. Epel
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Elizabeth H. Blackburn
- Department of Physiology and Biochemistry, UCSF School of Medicine, San Francisco, CA, USA
| | - Jue Lin
- Department of Physiology and Biochemistry, UCSF School of Medicine, San Francisco, CA, USA
| | - Victor I. Reus
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Heather Burke
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Rebecca Rosser
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Laura Mahan
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Scott Mackin
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Tony Yang
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Michael Weiner
- Department of Radiology, UCSF School of Medicine, and San Francisco Veterans Administration Medical Center, San Francisco, CA, USA
| | - Susanne Mueller
- Department of Radiology, UCSF School of Medicine, and San Francisco Veterans Administration Medical Center, San Francisco, CA, USA
| |
Collapse
|