1
|
Griffin BA, Lovegrove JA. Saturated fat and CVD: importance of inter-individual variation in the response of serum low-density lipoprotein cholesterol. Proc Nutr Soc 2024:1-11. [PMID: 38282001 DOI: 10.1017/s0029665124000107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The aim of this review is to provide an overview of the history in support of the role of dietary saturated fatty acids (SFA) in the development of cardiovascular disease (CVD), and the controversy and consensus for the evidence in support of guidelines to remove and replace SFA with unsaturated fatty acids. The review will also examine the existence, origins, and implications for CVD risk of variability in serum LDL-cholesterol in response to these guidelines. While the quality of supporting evidence for the efficacy of restricting SFA on CVD risk has attracted controversy, this has helped to increase understanding of the inter-relationships between SFA, LDL-cholesterol and CVD, and reinforce confidence in this dietary recommendation. Nevertheless, there is significant inter-individual variation in serum LDL-C in response to this dietary change. The origins of this variation are multi-factorial and involve both dietary and metabolic traits. If serum biomarkers of more complex metabolic traits underlying LDL-responsiveness can be identified, this would have major implications for the targeting of these dietary guidelines to LDL-responders, to maximise the benefit to their cardiovascular health.
Collapse
Affiliation(s)
- Bruce A Griffin
- Department of Nutrition, Food & Exercise Sciences, University of Surrey, GuildfordGU2 7XH, UK
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular & Metabolic Research, Department of Food and Nutritional Sciences, University of Reading, ReadingRG6 6DZ, UK
| |
Collapse
|
2
|
Ren X, Yuan P, Niu J, Liu Y, Li Y, Huang L, Jiang S, Jiao N, Yuan X, Li J, Yang W. Effects of dietary supplementation with microencapsulated Galla chinensis tannins on growth performance, antioxidant capacity, and lipid metabolism of young broiler chickens. Front Vet Sci 2023; 10:1259142. [PMID: 37954663 PMCID: PMC10637619 DOI: 10.3389/fvets.2023.1259142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
This study aimed to investigate the impacts of dietary supplementation with Galla chinensis tannins (GCT) on the growth performance, antioxidant capacity, and lipid metabolism of young broilers. Overall, a total of 216 healthy 1 day-old broilers were randomly allocated to CON group and GCT group, and provided with a basal diet or a basal diet added with 300 mg/kg microencapsulated GCT, respectively, in a 21 days trial. Our findings indicated that dietary GCT addition had no significant effects (p > 0.05) on growth performance. However, GCT supplementation led to a significant reduction in the total cholesterol (TC) concentration in the serum and liver (p < 0.05). Furthermore, GCT supplementation significantly increased the ratios of high-density lipoprotein (HDL) to low-density lipoprotein (LDL) and HDL to TC in the serum, in addition to elevating the activities of enzymes related to lipid metabolism in the liver (p < 0.05). Dietary GCT addition also improved the antioxidant capacity of the broilers, as evidenced by a significant decrease in the concentration of malondialdehyde in serum and liver (p < 0.05). Additionally, the GCT group exhibited significantly increased expressions of hepatic genes associated with antioxidant enzymes (HO-1, GPX1, SOD2, SIRT1, CPT-1, and PPARα) (p < 0.05), while the mRNA expression of SREBP-1 was significantly decreased (p < 0.05) compared with the CON group. In conclusion, dietary addition of 300 mg/kg microencapsulated GCT improved the antioxidant status and lipid metabolism of broilers without affecting their growth performance.
Collapse
Affiliation(s)
- Xiaojie Ren
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Shandong Taishan Shengliyuan Group Co., Ltd, Tai’an, China
| | - Peng Yuan
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Jiaxing Niu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Yang Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Yang Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Libo Huang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Shuzhen Jiang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Ning Jiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Xuejun Yuan
- College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Junxun Li
- Shandong Taishan Shengliyuan Group Co., Ltd, Tai’an, China
| | - Weiren Yang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
3
|
Ibold B, Tiemann J, Faust I, Ceglarek U, Dittrich J, Gorgels TGMF, Bergen AAB, Vanakker O, Van Gils M, Knabbe C, Hendig D. Genetic deletion of Abcc6 disturbs cholesterol homeostasis in mice. Sci Rep 2021; 11:2137. [PMID: 33483533 PMCID: PMC7822913 DOI: 10.1038/s41598-021-81573-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/22/2020] [Indexed: 02/05/2023] Open
Abstract
Genetic studies link adenosine triphosphate-binding cassette transporter C6 (ABCC6) mutations to pseudoxanthoma elasticum (PXE). ABCC6 sequence variations are correlated with altered HDL cholesterol levels and an elevated risk of coronary artery diseases. However, the role of ABCC6 in cholesterol homeostasis is not widely known. Here, we report reduced serum cholesterol and phytosterol levels in Abcc6-deficient mice, indicating an impaired sterol absorption. Ratios of cholesterol precursors to cholesterol were increased, confirmed by upregulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase (Hmgcr) expression, suggesting activation of cholesterol biosynthesis in Abcc6-/- mice. We found that cholesterol depletion was accompanied by a substantial decrease in HDL cholesterol mediated by lowered ApoA-I and ApoA-II protein levels and not by inhibited lecithin-cholesterol transferase activity. Additionally, higher proprotein convertase subtilisin/kexin type 9 (Pcsk9) serum levels in Abcc6-/- mice and PXE patients and elevated ApoB level in knockout mice were observed, suggesting a potentially altered very low-density lipoprotein synthesis. Our results underline the role of Abcc6 in cholesterol homeostasis and indicate impaired cholesterol metabolism as an important pathomechanism involved in PXE manifestation.
Collapse
Affiliation(s)
- Bettina Ibold
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545, Bad Oeynhausen, Germany
| | - Janina Tiemann
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545, Bad Oeynhausen, Germany
| | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545, Bad Oeynhausen, Germany
| | - Uta Ceglarek
- Institut für Laboratoriumsmedizin, Klinische Chemie und Molekulare Diagnostik, Universitätsklinikum Leipzig, 04103, Leipzig, Germany
| | - Julia Dittrich
- Institut für Laboratoriumsmedizin, Klinische Chemie und Molekulare Diagnostik, Universitätsklinikum Leipzig, 04103, Leipzig, Germany
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center, 6202 AZ, Maastricht, The Netherlands
- Netherlands Institute for Neurosciences (NIN-KNAW), Amsterdam, The Netherlands
| | - Arthur A B Bergen
- Netherlands Institute for Neurosciences (NIN-KNAW), Amsterdam, The Netherlands
- Academic Medical Centre, University of Amsterdam, 1100 DD, Amsterdam, The Netherlands
| | - Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000, Ghent, Belgium
| | - Matthias Van Gils
- Center for Medical Genetics, Ghent University Hospital, 9000, Ghent, Belgium
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545, Bad Oeynhausen, Germany
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|