1
|
Haight M, Smith P, Bray N, Nolan D, Hartwell M. Alcohol consumption among older adults in the United States amidst the COVID-19 pandemic: an analysis of the 2017-2021 Behavioral Risk Factor Surveillance System. J Osteopath Med 2024; 0:jom-2024-0054. [PMID: 39072478 DOI: 10.1515/jom-2024-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/16/2024] [Indexed: 07/30/2024]
Abstract
CONTEXT Alcohol consumption is responsible for numerous life-threatening diseases, including liver cirrhosis, heart disease, and various cancers. During the pandemic, alcohol-related deaths increased from 2019 to 2021, topping out at approximately 108,000 deaths related to alcohol. This trend also introduced the question whether heavy alcohol consumption and binge drinking increased during the pandemic, particularly in those 65 and older. OBJECTIVES The objective of this study is to determine whether heavy alcohol consumption and binge drinking increased during the pandemic in older adults in the United States. METHODS We performed a cross-sectional analysis of the Behavioral Risk Factor Surveillance System (BRFSS) to determine whether rates of overall alcohol consumption, heavy consumption, or binge drinking deviated from 2017 through 2021. We utilized chi-square tests to determine changes in rates over the included years. RESULTS Our findings show that the overall rate of alcohol use in populations 65 and older from 2017 through 2021 was approximately 42.1 %, which peaked in 2017 at 43.7 % and declined each year, resulting in the lowest rate (41.3 %) in 2021 (χ 2 =8.96, p<0.0001). Binge and heavy drinking rates were 5.1 % and 4.2 % overall during this time frame, respectively, and the annual changes were not statistically significant. CONCLUSIONS The impact of COVID-19 on the drinking behavior of older US adults was minimal in terms of binge or heavy drinking, although the overall rates of alcohol consumption among this group declined. Reports among other US age groups showed increased consumption and deaths from alcohol use. Future research is needed to determine the causes for the overall decrease in consumption or adaptive measures that this group may have taken, which led to minimal changes in binge or heavy drinking in contrast to younger populations.
Collapse
Affiliation(s)
- Macy Haight
- 12373 Oklahoma State University College of Osteopathic Medicine , Tahlequah, OK, USA
| | - Parker Smith
- Office of Medical Student Research, 12373 Oklahoma State University College of Osteopathic Medicine at Cherokee Nation , Tahlequah, OK, USA
| | - Natasha Bray
- Office of Medical Student Research, 12373 Oklahoma State University College of Osteopathic Medicine at Cherokee Nation , Tahlequah, OK, USA
| | - Douglas Nolan
- Department of Family Medicine, 12373 Oklahoma State University College of Osteopathic Medicine at Cherokee Nation , Tahlequah, OK, USA
| | - Micah Hartwell
- Office of Medical Student Research, 12373 Oklahoma State University College of Osteopathic Medicine at Cherokee Nation , Tahlequah, OK, USA
- Department of Psychiatry and Behavioral Sciences, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| |
Collapse
|
2
|
Blum K, Brodie MS, Pandey SC, Cadet JL, Gupta A, Elman I, Thanos PK, Gondre-Lewis MC, Baron D, Kazmi S, Bowirrat A, Febo M, Badgaiyan RD, Braverman ER, Dennen CA, Gold MS. Researching Mitigation of Alcohol Binge Drinking in Polydrug Abuse: KCNK13 and RASGRF2 Gene(s) Risk Polymorphisms Coupled with Genetic Addiction Risk Severity (GARS) Guiding Precision Pro-Dopamine Regulation. J Pers Med 2022; 12:jpm12061009. [PMID: 35743793 PMCID: PMC9224860 DOI: 10.3390/jpm12061009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/22/2022] Open
Abstract
Excessive alcohol intake, e.g., binge drinking, is a serious and mounting public health problem in the United States and throughout the world. Hence the need for novel insights into the underlying neurobiology that may help improve prevention and therapeutic strategies. Therefore, our group employed a darkness-induced alcohol intake protocol to define the reward deficiency domains of alcohol and other substance use disorders in terms of reward pathways' reduced dopamine signaling and its restoration via specifically-designed therapeutic compounds. It has been determined that KCNK13 and RASGRF2 genes, respectively, code for potassium two pore domain channel subfamily K member 13 and Ras-specific guanine nucleotide-releasing factor 2, and both genes have important dopamine-related functions pertaining to alcohol binge drinking. We present a hypothesis that identification of KCNK13 and RASGRF2 genes' risk polymorphism, coupled with genetic addiction risk score (GARS)-guided precision pro-dopamine regulation, will mitigate binge alcohol drinking. Accordingly, we review published reports on the benefits of this unique approach and provide data on favorable outcomes for both binge-drinking animals and drunk drivers, including reductions in alcohol intake and prevention of relapse to drinking behavior. Since driving under the influence of alcohol often leads to incarceration rather than rehabilitation, there is converging evidence to support the utilization of GARS with or without KCNK13 and RASGRF2 risk polymorphism in the legal arena, whereby the argument that "determinism" overrides the "free will" account may be a plausible defense strategy. Obviously, this type of research is tantamount to helping resolve a major problem related to polydrug abuse.
Collapse
Affiliation(s)
- Kenneth Blum
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA; (E.R.B.); (C.A.D.)
- Division of Addiction Research & Education, Center for Psychiatry, Medicine & Primary Care (Office of Provost), Western University Health Sciences, Pomona, CA 91766, USA; (D.B.); (M.F.)
- Institute of Psychology, ELTE Eötvös Loránd University, Egyetem tér 1-3, 1053 Budapest, Hungary
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Centre, Dayton, OH 45324, USA
- Correspondence:
| | - Mark S. Brodie
- Center for Alcohol Research in Epigenetics, Departments of Physiology and Biophysics, and Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA; (M.S.B.); (S.C.P.)
| | - Subhash C. Pandey
- Center for Alcohol Research in Epigenetics, Departments of Physiology and Biophysics, and Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA; (M.S.B.); (S.C.P.)
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA;
| | - Igor Elman
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA;
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Marjorie C. Gondre-Lewis
- Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA;
| | - David Baron
- Division of Addiction Research & Education, Center for Psychiatry, Medicine & Primary Care (Office of Provost), Western University Health Sciences, Pomona, CA 91766, USA; (D.B.); (M.F.)
| | - Shan Kazmi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Marcelo Febo
- Division of Addiction Research & Education, Center for Psychiatry, Medicine & Primary Care (Office of Provost), Western University Health Sciences, Pomona, CA 91766, USA; (D.B.); (M.F.)
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA;
| | - Eric R. Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA; (E.R.B.); (C.A.D.)
| | - Catherine A. Dennen
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA; (E.R.B.); (C.A.D.)
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
3
|
Reward Deficiency Syndrome (RDS): A Cytoarchitectural Common Neurobiological Trait of All Addictions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111529. [PMID: 34770047 PMCID: PMC8582845 DOI: 10.3390/ijerph182111529] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023]
Abstract
Alcohol and other substance use disorders share comorbidity with other RDS disorders, i.e., a reduction in dopamine signaling within the reward pathway. RDS is a term that connects addictive, obsessive, compulsive, and impulsive behavioral disorders. An estimated 2 million individuals in the United States have opioid use disorder related to prescription opioids. It is estimated that the overall cost of the illegal and legally prescribed opioid crisis exceeds one trillion dollars. Opioid Replacement Therapy is the most common treatment for addictions and other RDS disorders. Even after repeated relapses, patients are repeatedly prescribed the same opioid replacement treatments. A recent JAMA report indicates that non-opioid treatments fare better than chronic opioid treatments. Research demonstrates that over 50 percent of all suicides are related to alcohol or other drug use. In addition to effective fellowship programs and spirituality acceptance, nutrigenomic therapies (e.g., KB220Z) optimize gene expression, rebalance neurotransmitters, and restore neurotransmitter functional connectivity. KB220Z was shown to increase functional connectivity across specific brain regions involved in dopaminergic function. KB220/Z significantly reduces RDS behavioral disorders and relapse in human DUI offenders. Taking a Genetic Addiction Risk Severity (GARS) test combined with a the KB220Z semi-customized nutrigenomic supplement effectively restores dopamine homeostasis (WC 199).
Collapse
|
4
|
Blum K, Kazmi S, Modestino EJ, Downs BW, Bagchi D, Baron D, McLaughlin T, Green R, Jalali R, Thanos PK, Elman I, Badgaiyan RD, Bowirrat A, Gold MS. A Novel Precision Approach to Overcome the "Addiction Pandemic" by Incorporating Genetic Addiction Risk Severity (GARS) and Dopamine Homeostasis Restoration. J Pers Med 2021; 11:jpm11030212. [PMID: 33809702 PMCID: PMC8002215 DOI: 10.3390/jpm11030212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
This article describes a unique therapeutic precision intervention, a formulation of enkephalinase inhibitors, enkephalin, and dopamine-releasing neuronutrients, to induce dopamine homeostasis for detoxification and treatment of individuals genetically predisposed to developing reward deficiency syndrome (RDS). The formulations are based on the results of the addiction risk severity (GARS) test. Based on both neurogenetic and epigenetic evidence, the test evaluates the presence of reward genes and risk alleles. Existing evidence demonstrates that the novel genetic risk testing system can successfully stratify the potential for developing opioid use disorder (OUD) related risks or before initiating opioid analgesic therapy and RDS risk for people in recovery. In the case of opioid use disorders, long-term maintenance agonist treatments like methadone and buprenorphine may create RDS, or RDS may have been in existence, but not recognized. The test will also assess the potential for benefit from medication-assisted treatment with dopamine augmentation. RDS methodology holds a strong promise for reducing the burden of addictive disorders for individuals, their families, and society as a whole by guiding the restoration of dopamine homeostasisthrough anti-reward allostatic neuroadaptations. WC 175.
Collapse
Affiliation(s)
- Kenneth Blum
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (S.K.); (D.B.)
- Institute of Psychology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX 78712, USA; (T.M.); (R.G.); (R.J.)
- Department of Psychiatry, University of Vermont, Burlington, VT 05405, USA
- Department of Psychiatry, Wright University Boonshoff School of Medicine, Dayton, OH 45435, USA
- Division of Precision Nutrition, Victory Nutrition International, Lederach, PA 19450, USA; (B.W.D.); (D.B.)
- Center for Genomic Testing, Geneus Health LLC, San Antonio, TX 78249, USA
- Correspondence: ; Tel.: +1-619p-890-2167
| | - Shan Kazmi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (S.K.); (D.B.)
| | | | - Bill William Downs
- Division of Precision Nutrition, Victory Nutrition International, Lederach, PA 19450, USA; (B.W.D.); (D.B.)
| | - Debasis Bagchi
- Division of Precision Nutrition, Victory Nutrition International, Lederach, PA 19450, USA; (B.W.D.); (D.B.)
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - David Baron
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (S.K.); (D.B.)
| | - Thomas McLaughlin
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX 78712, USA; (T.M.); (R.G.); (R.J.)
| | - Richard Green
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX 78712, USA; (T.M.); (R.G.); (R.J.)
- Precision Translational Medicine (Division of Ivitalize), San Antonio, TX 78249, USA
| | - Rehan Jalali
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX 78712, USA; (T.M.); (R.G.); (R.J.)
- Center for Genomic Testing, Geneus Health LLC, San Antonio, TX 78249, USA
| | - Panayotis K. Thanos
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, University at Buffalo, Buffalo, NY 14260, USA;
| | - Igor Elman
- Department of Psychiatry, Harvard University, School of Medicine, Cambridge, MA 02142, USA;
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital and Long School of Medicine, University of Texas Health Science Center, San Antonio, TX 78249, USA;
- Department of Psychiatry, MT. Sinai School of Medicine, New York, NY 10003, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
5
|
Blum K, McLaughlin T, Modestino EJ, Baron D, Bowirrat A, Brewer R, Steinberg B, Roy AK, Febo M, Badgaiyan RD, Gold MS. Epigenetic Repair of Terrifying Lucid Dreams by Enhanced Brain Reward Functional Connectivity and Induction of Dopaminergic Homeostatic Signaling. ACTA ACUST UNITED AC 2021; 10. [PMID: 34707968 DOI: 10.2174/2211556010666210215153513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During Lucid Dreams, the dreamer is aware, experiences the dream as if fully awake, and may control the dream content. The dreamer can start, stop, and restart dreaming, depending on the nature and pleasantness of the dream. For patients with Reward Deficiency Syndrome (RDS) behaviors, like Attention Deficit Hyperactivity Disorder (ADHD), Tourette's- Syndrome, and Posttraumatic Stress Disorder (PTSD), the dream content may be pleasant, unpleasant, or terrifying. A sample of psychiatric center patients identified as having RDS reported the effectiveness of a neuronutrient, dopamine agonist, KB200Z, in combating terrifying, lucid dreaming. These reports motivated the study of eight clinical cases with known histories of substance abuse, childhood abuse, and PTSD. The administration of KB200Z, associated with eliminating unpleasant or terrifying lucid dreams in 87.5% of the cases. Subsequently, other published cases have further established the possibility of the long-term elimination of terrifying dreams in PTSD and ADHD patients. Induction of dopamine homeostasis may mitigate the effects of neurogenetic and epigenetic changes in neuroplasticity, identified in the pathogenesis of PTSD and ADHD. The article explores how relief of terrifying lucid dreams may benefit from modulation of dopaminergic signaling activated by the administration of a neuronutrient. Recently, precision formulations of the KB220 neuronutrient guided by Genetic Addiction Risk Score (GARS) test results have been used to repair inheritable deficiencies within the brain reward circuitry. The proposition is that improved dopamine transmodulational signaling may stimulate positive cognitive recall and subsequently attenuate the harmful epigenetic insults from trauma.
Collapse
Affiliation(s)
- Kenneth Blum
- Western University Health Sciences, Pomona, CA., USA.,Department Psychiatry, Wright University, Boonshoff School of Medicine, Dayton, OH., USA.,Division of Neuroscience & Addiction Research Therapy, Pathway Healthcare, Birmingham, AL., USA.,Division of Nutrigenomics, Geneus Genomic Testing Center, Geneus Health, LLC., San Antonio, TX., USA.,Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | | | | | - David Baron
- Department Psychiatry, Wright University, Boonshoff School of Medicine, Dayton, OH., USA
| | - Abdalla Bowirrat
- Department of Neuroscience and Genetics, Interdisciplinary Center Herzliya, Israel
| | - Raymond Brewer
- Division of Nutrigenomics, Geneus Genomic Testing Center, Geneus Health, LLC., San Antonio, TX., USA
| | | | - A Kenison Roy
- Department of Psychiatry, School of Medicine, University of Tulane, New Orleans, LA., USA
| | - Marcello Febo
- Department of Psychiatry, McKnight Brain Institute, University of Florida, School of Medicine, Gainesville, FL.USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Ichan School of Medicine, Mount Sinai Hospital, New York, NY.& Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Marks S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Mo. USA
| |
Collapse
|
6
|
Gold MS, Baron D, Bowirrat A, Blum K. Neurological correlates of brain reward circuitry linked to opioid use disorder (OUD): Do homo sapiens acquire or have a reward deficiency syndrome? J Neurol Sci 2020; 418:117137. [PMID: 32957037 PMCID: PMC7490287 DOI: 10.1016/j.jns.2020.117137] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/19/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
The extant literature confirms that an array of polymorphic genes related to- neurotransmitters and second messengers govern the net release of dopamine in the Nucleus Accumbens (NAc) in the mesolimbic region of the brain. They are linked predominantly to motivation, anti-stress, incentive salience (wanting), and wellbeing. Notably, in 2000 the Nobel Prize was awarded to Carlsson, Greengard, and Kandel for their work on the molecular and cellular function of dopaminergic activity at neurons. This historical psychopharmacological work involved neurotransmission of serotonin, endorphins, glutamate, and dopamine, and the seminal work of Blum, Gold, Volkow, Nestler, and others related to neurotransmitter function and related behaviors. Currently, Americans are facing their second and worst opioid epidemic, prescribed opioids, and easy access drive this epidemic of overdoses, and opioid use disorders (OUDs). Presently the clinical consensus is to treat OUD, as if it were an opioid deficiency syndrome, with long-term to life-long opioid substitution therapy. Opioid agonist administration is seen as necessary to replace missing opioids, treat OUD, and prevent overdoses, like insulin is used to treat diabetes. Treatment of OUD and addiction, in general, is similar to the endocrinopathy conceptualization in that it views opioid agonist MATs as an essential core to therapy. Is this approach logical? Other than as harm reduction, is using opioids to treat OUD therapeutic or harmful in the long term? This historical Trieste provides a molecular framework to understand the current underpinnings of endorphinergic/dopaminergic mechanisms related to opioid deficiency syndrome and generalized reward processing depletion. WC 249.
Collapse
Affiliation(s)
- Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States.
| | - David Baron
- Graduate School of Biomedical Sciences, Western University Health Sciences, Pomona, CA, United States
| | - Abdalla Bowirrat
- Department of Neuroscience and Genetics, Interdisciplinary Center Herzliya, Israel
| | - Kenneth Blum
- Graduate School of Biomedical Sciences, Western University Health Sciences, Pomona, CA, United States
| |
Collapse
|
7
|
Brewer R, Blum K, Bowirrat A, Modestino EJ, Baron D, Badgaiyan RD, Moran M, Boyett B, Gold MS. Transmodulation of Dopaminergic Signaling to Mitigate Hypodopminergia and Pharmaceutical Opioid-Induced Hyperalgesia. CURRENT PSYCHOPHARMACOLOGY 2020; 9:164-184. [PMID: 37361136 PMCID: PMC10288629 DOI: 10.2174/2211556009999200628093231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/16/2020] [Accepted: 05/06/2020] [Indexed: 06/28/2023]
Abstract
Neuroscientists and psychiatrists working in the areas of "pain and addiction" are asked in this perspective article to reconsider the current use of dopaminergic blockade (like chronic opioid agonist therapy), and instead to consider induction of dopamine homeostasis by putative pro-dopamine regulation. Pro-dopamine regulation could help pharmaceutical opioid analgesic agents to mitigate hypodopaminergia-induced hyperalgesia by inducing transmodulation of dopaminergic signaling. An optimistic view is that early predisposition to diagnosis based on genetic testing, (pharmacogenetic/pharmacogenomic monitoring), combined with appropriate urine drug screening, and treatment with pro-dopamine regulators, could conceivably reduce stress, craving, and relapse, enhance well-being and attenuate unwanted hyperalgesia. These concepts require intensive investigation. However, based on the rationale provided herein, there is a good chance that combining opioid analgesics with genetically directed pro-dopamine-regulation using KB220 (supported by 43 clinical studies). This may become a front-line technology with the potential to overcome, in part, the current heightened rates of chronic opioid-induced hyperalgesia and concomitant Reward Deficiency Syndrome (RDS) behaviors. Current research does support the hypothesis that low or hypodopaminergic function in the brain may predispose individuals to low pain tolerance or hyperalgesia.
Collapse
Affiliation(s)
- Raymond Brewer
- Department of Nutrigenomics, Genomic Testing Center, Geneus Health, LLC., San Antonio, TX, USA
| | - Kenneth Blum
- Department of Nutrigenomics, Genomic Testing Center, Geneus Health, LLC., San Antonio, TX, USA
- Western University Health Sciences, Pomona, CA., USA
- Division of Neuroscience and Addiction Research, Pathway Healthcare, Birmingham, AL, USA
- Eotvos Loránd University, Institute of Psychology, Budapest, Hungary
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH, USA
- Department of Psychiatry, University of Vermont, Burlington, VT., USA
| | - Abdalla Bowirrat
- Department of Neuroscience and Genetics, Interdisciplinary Center Herzliya, Israel
| | | | - David Baron
- Western University Health Sciences, Pomona, CA., USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, ICHAN School of Medicine, Mount Sinai, New York, NYC. & Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Mark Moran
- Department of Nutrigenomics, Genomic Testing Center, Geneus Health, LLC., San Antonio, TX, USA
| | - Brent Boyett
- Division of Neuroscience and Addiction Research, Pathway Healthcare, Birmingham, AL, USA
- Bradford Health Services, Madison, AL., USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Mo., USA
| |
Collapse
|
8
|
The impact of sugar consumption on stress driven, emotional and addictive behaviors. Neurosci Biobehav Rev 2019; 103:178-199. [DOI: 10.1016/j.neubiorev.2019.05.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/14/2019] [Accepted: 05/19/2019] [Indexed: 12/20/2022]
|