1
|
Sarkar S, Prasanna VS, Das P, Suzuki H, Fujihara K, Kodama S, Sone H, Sreedhar R, Velayutham R, Watanabe K, Arumugam S. The onset and the development of cardiometabolic aging: an insight into the underlying mechanisms. Front Pharmacol 2024; 15:1447890. [PMID: 39391689 PMCID: PMC11464448 DOI: 10.3389/fphar.2024.1447890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024] Open
Abstract
Metabolic compromise is crucial in aggravating age-associated chronic inflammation, oxidative stress, mitochondrial damage, increased LDL and triglycerides, and elevated blood pressure. Excessive adiposity, hyperglycemia, and insulin resistance due to aging are associated with elevated levels of damaging free radicals, inducing a proinflammatory state and hampering immune cell activity, leading to a malfunctioning cardiometabolic condition. The age-associated oxidative load and redox imbalance are contributing factors for cardiometabolic morbidities via vascular remodelling and endothelial damage. Recent evidence has claimed the importance of gut microbiota in maintaining regular metabolic activity, which declines with chronological aging and cardiometabolic comorbidities. Genetic mutations, polymorphic changes, and environmental factors strongly correlate with increased vulnerability to aberrant cardiometabolic changes by affecting key physiological pathways. Numerous studies have reported a robust link between biological aging and cardiometabolic dysfunction. This review outlines the scientific evidence exploring potential mechanisms behind the onset and development of cardiovascular and metabolic issues, particularly exacerbated with aging.
Collapse
Affiliation(s)
- Sulogna Sarkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| | - Vani S. Prasanna
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| | - Pamelika Das
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| | - Hiroshi Suzuki
- Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuya Fujihara
- Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoru Kodama
- Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Remya Sreedhar
- School of Pharmacy, Sister Nivedita University, Kolkata, West Bengal, India
| | - Ravichandiran Velayutham
- Director, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| | - Kenichi Watanabe
- Department of Laboratory Medicine and Clinical Epidemiology for Prevention of Noncommunicable Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Somasundaram Arumugam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Yang SH, Yang H, Ahn BM, Lee SY, Lee SJ, Kim JS, Koo YT, Lee CH, Kim JH, Yoon Park JH, Jang YJ, Lee KW. Fermented Yak-Kong using Bifidobacterium animalis derived from Korean infant intestine effectively relieves muscle atrophy in an aging mouse model. Food Funct 2024; 15:7224-7237. [PMID: 38812412 DOI: 10.1039/d3fo04204a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Yak-Kong (YK) is a small black soybean widely cultivated in Korea. It is considered to have excellent health functionality, as it has been reported to have better antioxidant efficacy than conventional black or yellow soybeans. Since YK has been described as good for the muscle health of the elderly in old oriental medicine books, this study sought to investigate the effect of fermented YK with Bifidobacterium animalis subsp. lactis LDTM 8102 (FYK) on muscle atrophy. In C2C12 mouse myoblasts, FYK elevated the expression of MyoD, total MHC, phosphorylated AKT, and PGC1α. In addition, two kinds of in vivo studies were conducted using both an induced and normal aging mouse model. The behavioral test results showed that in the induced aging mouse model, FYK intake alleviated age-related muscle weakness and loss of exercise performance. In addition, FYK alleviated muscle mass decrease and improved the expression of biomarkers including total MHC, myf6, phosphorylated AKT, PGC1α, and Tfam, which are related to myoblast differentiation, muscle protein synthesis, and mitochondrial generation in the muscle. In the normal aging model, FYK consumption did not increase muscle mass, but did upregulate the expression levels of biomarkers related to myoblast differentiation, muscle hypertrophy, and muscle function. Furthermore, it mitigated age-related declines in skeletal muscle force production and functional limitation by enhancing exercise performance and grip strength. Taken together, the results suggest that FYK has the potential to be a new functional food material that can alleviate the loss of muscle mass and strength caused by aging and prevent sarcopenia.
Collapse
Affiliation(s)
- Seung Hee Yang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hee Yang
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea
| | - Byeong Min Ahn
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sung-Young Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Seon Joo Lee
- Kwangdong Pharmaceutical, Seoul, 06650, Republic of Korea
| | - Jin Soo Kim
- Kwangdong Pharmaceutical, Seoul, 06650, Republic of Korea
| | - Young Tae Koo
- Kwangdong Pharmaceutical, Seoul, 06650, Republic of Korea
| | - Chang Hyung Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Hun Kim
- Department of Food Science & Biotechnology, Sungshin Women's University, Seoul, 01133, Republic of Korea
| | - Jung Han Yoon Park
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Jin Jang
- Major of Food Science & Biotechnology, Seoul Women's University, Seoul, 01797, Republic of Korea.
| | - Ki Won Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
- Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
- Department of Agricultural Biotechnology and Center for Food and Bio convergence, Seoul National. University, Seoul, 08826, Republic of Korea
| |
Collapse
|
3
|
Huang CH, Chen CL, Shieh CC, Chang SH, Tsai GJ. Evaluation of Hypoglycemic and Antioxidant Activities of Soybean Meal Products Fermented by Lactobacillus plantarum FPS 2520 and Bacillus subtilis N1 in Rats Fed with High-Fat Diet. Metabolites 2022; 12:metabo12050442. [PMID: 35629946 PMCID: PMC9147997 DOI: 10.3390/metabo12050442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
The hypoglycemic and antioxidant activities of Lactobacillus plantarum FPS 2520 and/or Bacillus subtilis N1 fermented soybean meal (SBM) in rats fed a high-fat diet (HFD) were investigated by assessing plasma glucose levels, insulin resistance, and oxidative stress-induced organ damage. Supplementation with FPS 2520- and/or N1-fermented SBM (500 and 1000 mg/kg of body weight per day) to HFD-induced obese rats for 6 weeks significantly down-regulated the concentration of plasma glucose during the oral glucose tolerance test (OGTT), as well as the concentration of fasting plasma glucose, insulin, and the value of the homeostasis model assessment of insulin resistance (HOMA-IR). In addition, plasma and hepatic levels of malondialdehyde (MDA) were alleviated in rats fed fermented SBM, especially SBM fermented by mixed strains. Moreover, fermented SBM treatment reduced HFD-exacerbated increases in plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, and uric acid levels. Based on these results, we clearly demonstrate the effect of fermented SBM on improving insulin resistance and oxidation-induced organ damage. Therefore, it is suggested that fermented SBM has the potential to be developed as functional foods for the management of obesity-induced hyperglycemia and organ damage.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-L.C.); (C.-C.S.)
| | - Chun-Lung Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-L.C.); (C.-C.S.)
| | - Chen-Che Shieh
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-L.C.); (C.-C.S.)
| | - Shun-Hsien Chang
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Guo-Jane Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-L.C.); (C.-C.S.)
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence:
| |
Collapse
|
4
|
Das D, Sarkar S, Borsingh Wann S, Kalita J, Manna P. Current perspectives on the anti-inflammatory potential of fermented soy foods. Food Res Int 2022; 152:110922. [PMID: 35181093 DOI: 10.1016/j.foodres.2021.110922] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/15/2022]
Abstract
Fermented soy foods (FSF) are gaining significant attention due to promising health benefits. In recent years, FSF are being studied extensively due to the presence of diverse functional ingredients including active isoflavones and peptides along with essential micronutrients. The process of fermentation is responsible for the enrichment of various bioactive principles in soy-based fermented foods and exclusion of some anti-nutrient factors which are found predominantly in raw soybeans. Emerging evidence suggests that FSF possess immense therapeutic potential against inflammation and associated pathological complications. Extracts prepared from various FSF (e.g. fermented soy paste, milk, and sauce) were found to exert promising anti-inflammatory effects in numerous in vitro and in vivo settings. Moreover, clinical findings highlighted an inverse relationship between consumption of FSF and the prevalence of chronic inflammatory disorders among the communities which habitually consume fermented soy products. Molecular mechanisms underlying the anti-inflammatory role of FSF have been delineated in many literatures which collectively suggest that FSF extracts have regulatory actions over the expression and/or activity of several proinflammatory cytokines, inflammatory mediators, oxidative stress markers, and some other factors involved in the inflammatory pathways. The present review discusses the anti-inflammatory effects of FSF with mechanistic insights based upon the available findings from cell culture, preclinical, and clinical investigations.
Collapse
Affiliation(s)
- Dibyendu Das
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjib Sarkar
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sawlang Borsingh Wann
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Center for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Jatin Kalita
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Research Planning and Business Development Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Center for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Prasenjit Manna
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Center for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
| |
Collapse
|
5
|
Sánchez‐Navarro A, Martínez‐Rojas MÁ, Caldiño‐Bohn RI, Pérez‐Villalva R, Zambrano E, Castro‐Rodríguez DC, Bobadilla NA. Early triggers of moderately high-fat diet-induced kidney damage. Physiol Rep 2021; 9:e14937. [PMID: 34291592 PMCID: PMC8295594 DOI: 10.14814/phy2.14937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 11/30/2022] Open
Abstract
Most of the obesity murine models inducing renal injury use calorie-enriched foods, where fat represents 60% of the total caloric supply, however, this strategy doubles the standard proportion of fat ingestion in obese patients. Therefore, it is crucial to study the impact of a high-fat intake on kidney physiology that resembles common obesity in humans to understand the trigger mechanisms of the long-term consequences of overweight and obesity. In this study, we analyzed whether chronic feeding with a moderately high fat diet (MHFD) representing 45% of total calories, may induce kidney function and structural injury compared to C57BL/6 mice fed a control diet. After 14 weeks, MHFD induced significant mice obesity. At the functional level, obese mice showed signs of kidney injury characterized by increased albuminuria/creatinine ratio and higher excretion of urinary biomarkers of kidney damage. While, at the structural level, glomerular hypertrophy was observed. Although, we did not detect renal fibrosis, the obese mice exhibited a significant elevation of Tgfb1 mRNA levels. Kidney damage caused by the exposure to MHFD was associated with greater oxidative stress, renal inflammation, higher endoplasmic reticulum (ER)-stress, and disruption of mitochondrial dynamics. In summary, our data demonstrate that obesity induced by a milder fat content diet is enough to establish renal injury, where oxidative stress, inflammation, ER-stress, and mitochondrial damage take relevance, pointing out the importance of opportune interventions to avoid the long-term consequences associated with obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Andrea Sánchez‐Navarro
- Molecular Physiology UnitInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Department of NephrologyInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| | - Miguel Ángel Martínez‐Rojas
- Molecular Physiology UnitInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Department of NephrologyInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| | - Rebecca I. Caldiño‐Bohn
- Molecular Physiology UnitInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Department of NephrologyInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| | - Rosalba Pérez‐Villalva
- Molecular Physiology UnitInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Department of NephrologyInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| | - Elena Zambrano
- Department of Biology of ReproductionInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| | - Diana C. Castro‐Rodríguez
- Department of Biology of ReproductionInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
- CONACyT‐CátedrasMexico CityMexico
| | - Norma A. Bobadilla
- Molecular Physiology UnitInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Department of NephrologyInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| |
Collapse
|
6
|
Kuo YK, Lin YC, Lee CY, Chen CY, Tani J, Huang TJ, Chang H, Wu MH. Novel Insights into the Pathogenesis of Spinal Sarcopenia and Related Therapeutic Approaches: A Narrative Review. Int J Mol Sci 2020; 21:E3010. [PMID: 32344580 PMCID: PMC7216136 DOI: 10.3390/ijms21083010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Spinal sarcopenia is a complex and multifactorial disorder associated with a loss of strength, increased frailty, and increased risks of fractures and falls. In addition, spinal sarcopenia has been associated with lumbar spine disorders and osteoporosis, which renders making decisions on treatment modalities difficult. Patients with spinal sarcopenia typically exhibit lower cumulative survival, a higher risk of in-hospital complications, prolonged hospital stays, higher postoperative costs, and higher rates of blood transfusion after thoracolumbar spine surgery. Several studies have focused on the relationships between spinal sarcopenia, appendicular muscle mass, and bone-related problems-such as osteoporotic fractures and low bone mineral density-and malnutrition and vitamin D deficiency. Although several techniques are available for measuring sarcopenia, each of them has its advantages and shortcomings. For treating spinal sarcopenia, nutrition, physical therapy, and medication have been proven to be effective; regenerative therapeutic options seem to be promising owing to their repair and regeneration potential. Therefore, in this narrative review, we summarize the characteristics, detection methodologies, and treatment options for spinal sarcopenia, as well as its role in spinal disorders.
Collapse
Affiliation(s)
- Yu-Kai Kuo
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Medicine, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Yu-Ching Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Keelung & Chang Gung University, College of Medicine, Keelung 20401, Taiwan;
| | - Ching-Yu Lee
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan; (C.-Y.L.)
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Yu Chen
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Stanford Byers Center for Biodesign, Stanford University, Stanford, CA 94305, USA;
| | - Jowy Tani
- Stanford Byers Center for Biodesign, Stanford University, Stanford, CA 94305, USA;
- Department of Neurology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan
| | - Tsung-Jen Huang
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan; (C.-Y.L.)
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Hsi Chang
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pediatrics, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Meng-Huang Wu
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan; (C.-Y.L.)
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Stanford Byers Center for Biodesign, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|