1
|
Mazzoni C, Piacentini A, Di Bella L, Aldega L, Perinelli C, Conte AM, Ingrassia M, Ruspandini T, Bonfanti A, Caraba B, Falese FG, Chiocci FL, Fazi S. Carbonate precipitation and phosphate trapping by microbialite isolates from an alkaline insular lake (Bagno dell'Acqua, Pantelleria Island, Italy). Front Microbiol 2024; 15:1391968. [PMID: 38841062 PMCID: PMC11150794 DOI: 10.3389/fmicb.2024.1391968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
The Bagno dell'Acqua lake is characterized by CO2 emissions, alkaline waters (pH = 9) and Eh values which indicate strongly oxidizing conditions. A typical feature of the lake is the presence of actively growing microbialites rich in calcium carbonates and silica precipitates. Mineralogy, petrography and morphology analyses of the microbialites were coupled with the analysis of the microbial community, combining molecular and cultivation approaches. The DNA sequencing revealed distinct patterns of microbial diversity, showing pronounced differences between emerged and submerged microbialite, with the upper layer of emerged samples exhibiting the most distinctive composition, both in terms of prokaryotes and eukaryotes. In particular, the most representative phyla in the microbial community were Proteobacteria, Actinobacteriota, and Bacteroidota, while Cyanobacteria were present only with an average of 5%, with the highest concentration in the submerged intermediate layer (12%). The role of microorganisms in carbonate mineral formation was clearly demonstrated as most of the isolates were able to precipitate calcium carbonate and five of them were characterized at molecular level. Interestingly, when microbial isolates were cultivated only in filtered water, the precipitation of hazenite was observed (up to 85%), opening new prospective in P (phosphate) recovery from P depleted environments.
Collapse
Affiliation(s)
- Cristina Mazzoni
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, Rome, Italy
| | - Agnese Piacentini
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, Rome, Italy
| | - Letizia Di Bella
- Department of Earth Sciences, Sapienza University of Rome, Rome, Italy
| | - Luca Aldega
- Department of Earth Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Aida Maria Conte
- Institute of Environmental Geology and Geoengineering, National Research Council (IGAG-CNR), Department of Earth Sciences, Sapienza University of Rome, Rome, Italy
| | - Michela Ingrassia
- Institute of Environmental Geology and Geoengineering, National Research Council (IGAG-CNR), Department of Earth Sciences, Sapienza University of Rome, Rome, Italy
| | - Tania Ruspandini
- Department of Earth Sciences, Sapienza University of Rome, Rome, Italy
| | - Andrea Bonfanti
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Benedetta Caraba
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Francesco Giuseppe Falese
- Institute of Environmental Geology and Geoengineering, National Research Council (IGAG-CNR), Department of Earth Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Stefano Fazi
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, Rome, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
2
|
Lee G, Choi H, Liu H, Han YH, Paul NC, Han GH, Kim H, Kim PI, Seo SI, Song J, Sang H. Biocontrol of the causal brown patch pathogen Rhizoctonia solani by Bacillus velezensis GH1-13 and development of a bacterial strain specific detection method. FRONTIERS IN PLANT SCIENCE 2023; 13:1091030. [PMID: 36699832 PMCID: PMC9868939 DOI: 10.3389/fpls.2022.1091030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Brown patch caused by the basidiomycete fungus Rhizoctonia solani is an economically important disease of cool-season turfgrasses. In order to manage the disease, different types of fungicides have been applied, but the negative impact of fungicides on the environment continues to rise. In this study, the beneficial bacteria Bacillus velezensis GH1-13 was characterized as a potential biocontrol agent to manage brown patch disease. The strain GH1-13 strongly inhibited the mycelial growth of turf pathogens including different anastomosis groups of R. solani causing brown patch and large patch. R. solani AG2-2(IIIB) hyphae were morphologically changed, and fungal cell death resulted from exposure to the strain GH1-13. In addition, the compatibility of fungicides with the bacterial strain, and the combined application of fungicide azoxystrobin and the strain in brown patch control on creeping bentgrass indicated that the strain could serve as a biocontrol agent. To develop strain-specific detection method, two unique genes from chromosome and plasmid of GH1-13 were found using pan-genome analysis of 364 Bacillus strains. The unique gene from chromosome was successfully detected using both SYBR Green and TaqMan qPCR methods in bacterial DNA or soil DNA samples. This study suggests that application of GH1-13 offers an environmentally friendly approach via reducing fungicide application rates. Furthermore, the developed pipeline of strain-specific detection method could be a useful tool for detecting and studying the dynamics of specific biocontrol agents.
Collapse
Affiliation(s)
- Gahee Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Hyeongju Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Haifeng Liu
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Yun-Hyeong Han
- Division of Food and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
- Damyang-gun Agricultural Technology Center, Damyang, Republic of Korea
| | - Narayan Chandra Paul
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Gui Hwan Han
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup, Republic of Korea
| | | | - Pyoung Il Kim
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup, Republic of Korea
| | - Sun-Il Seo
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup, Republic of Korea
| | - Jaekyeong Song
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
- Division of Food and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Park G, Nam J, Kim J, Song J, Kim PI, Min HJ, Lee CW. Structure and Mechanism of Surfactin Peptide from
Bacillus velezensis
Antagonistic to Fungi Plant Pathogens. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gwansik Park
- Department of ChemistryChonnam National University Gwangju 61186 Republic of Korea
| | - Jiyoung Nam
- Department of ChemistryChonnam National University Gwangju 61186 Republic of Korea
| | - Jueun Kim
- Department of ChemistryChonnam National University Gwangju 61186 Republic of Korea
| | - Jaekyeong Song
- Agricultural Microbiology Division, National Institute of Agricultural Sciences (NAS)Rural Development Administration (RDA) Jeonju 55365 Republic of Korea
| | - Pyoung Il Kim
- Center for Industrialization of Agricultural and Livestock Microorganisms Chonbuk 56212 Republic of Korea
| | - Hye Jung Min
- Department of Cosmetic Science, Kwangju Women's University Gwangju 62396 Republic of Korea
| | - Chul Won Lee
- Department of ChemistryChonnam National University Gwangju 61186 Republic of Korea
| |
Collapse
|
4
|
Kim YH, Choi Y, Oh YY, Ha NC, Song J. Plant growth-promoting activity of beta-propeller protein YxaL secreted from Bacillus velezensis strain GH1-13. PLoS One 2019; 14:e0207968. [PMID: 31022189 PMCID: PMC6483160 DOI: 10.1371/journal.pone.0207968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/09/2019] [Indexed: 01/23/2023] Open
Abstract
YxaL is conserved within the Bacillus subtilis species complex associated with plants and soil. The mature YxaL protein contains a repeated beta-propeller domain, but the subcellular location and function of YxaL has not been determined. The gene encoding the mature YxaL protein was PCR amplified from genomic DNA of B. velezensis strain GH1-13 and used for recombinant protein production. A rabbit polyclonal antibody against the purified YxaL was generated and used for western blotting to determine the constitutive expression and secretion of YxaL. During normal culture growth of strain GH1-13, levels of the constitutively secreted YxaL were slowly rising to 100 μg L-1, and degraded with a half-life of 1.6 h in the culture medium. When the effects of YxaL on plant seed germination and seedling growth were examined, it was shown that seed treatment of Arabidopsis thaliana and rice (Oryza sativa L.) with purified YxaL at the optimal concentration of 1 mg L-1 was effective at improving the root growth of plants. Seedlings from the treated Arabidopsis seeds markedly increased transcription of a 1-aminocyclopropane-1-carboxylate synthetase marker gene (ACS11) but reduced expression of auxin- and abscisic acid-responsive marker genes (IAA1, GH3.3, and ABF4), especially when provided with exogenous auxin. Horticulture experiments showed that pepper (Capsicum annuum) seeds treated with 1 mg L-1 YxaL in a soaking solution increased shoot growth and improved tolerance to drought stress. We hypothesize that YxaL secreted from plant growth-promoting Bacillus cells has a significant impact on plant roots, with the potential to improve plant growth and stress tolerance.
Collapse
Affiliation(s)
- Yong-Hak Kim
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
- * E-mail: (YHK); (JS)
| | - Yunhee Choi
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
| | - Yu Yeong Oh
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
| | - Nam-Chul Ha
- Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Jaekyeong Song
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
- * E-mail: (YHK); (JS)
| |
Collapse
|
5
|
Lee YH, Jang SJ, Han JH, Bae JS, Shin H, Park HJ, Sang MK, Han SH, Kim KS, Han SW, Hong JK. Enhanced Tolerance of Chinese Cabbage Seedlings Mediated by Bacillus aryabhattai H26-2 and B. siamensis H30-3 against High Temperature Stress and Fungal Infections. THE PLANT PATHOLOGY JOURNAL 2018; 34:555-566. [PMID: 30588228 PMCID: PMC6305178 DOI: 10.5423/ppj.oa.07.2018.0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/28/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
Two rhizobacteria Bacillus aryabhattai H26-2 and B. siamensis H30-3 were evaluated whether they are involved in stress tolerance against drought and high temperature as well as fungal infections in Chinese cabbage plants. Chinese cabbage seedlings cv. Ryeokgwang (spring cultivar) has shown better growth compared to cv. Buram-3-ho (autumn cultivar) under high temperature conditions in a greenhouse, whilst there was no difference in drought stress tolerance of the two cultivars. In vitro growth of B. aryabhattai H26-2 and B. siamensis H30-3 were differentially regulated under PEG 6000-induced drought stress at different growing temperatures (30, 40 and 50°C). Pretreatment with B. aryabhattai H26-2 and B. siamensis H30-3 enhanced the tolerance of Chinese cabbage seedlings to high temperature, but not to drought stress. It turns out that only B. siamensis H30-3 showed in vitro antifungal activities and in planta crop protection against two fungal pathogens Alternaria brassicicola and Colletotrichum higginsianum causing black spots and anthracnose on Chinese cabbage plants cv. Ryeokgwang, respectively. B. siamensis H30-3 brings several genes involved in production of cyclic lipopeptides in its genome and secreted hydrolytic enzymes like chitinase, protease and cellulase. B. siamensis H30-3 was found to produce siderophore, a high affinity iron-chelating compound. Expressions of BrChi1 and BrGST1 genes were up-regulated in Chinese cabbage leaves by B. siamensis H30-3. These findings suggest that integration of B. aryabhattai H26-2 and B. siamensis H30-3 in Chinese cabbage production system may increase productivity through improved plant growth under high temperature and crop protection against fungal pathogens.
Collapse
Affiliation(s)
- Young Hee Lee
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), 33 Dongjin-ro, Jinju 52725,
Korea
| | - Su Jeong Jang
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), 33 Dongjin-ro, Jinju 52725,
Korea
| | - Joon-Hee Han
- Division of Bioresource Sciences, Kangwon National University, Chuncheon 24341,
Korea
| | - Jin Su Bae
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), 33 Dongjin-ro, Jinju 52725,
Korea
| | - Hyunsuk Shin
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), 33 Dongjin-ro, Jinju 52725,
Korea
| | - Hee Jin Park
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029,
Korea
| | - Mee Kyung Sang
- National Institute of Agricultural Science, Rural Development Administration, Wanju 55365,
Korea
| | | | - Kyoung Su Kim
- Division of Bioresource Sciences, Kangwon National University, Chuncheon 24341,
Korea
| | - Sang-Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17546,
Korea
| | - Jeum Kyu Hong
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), 33 Dongjin-ro, Jinju 52725,
Korea
| |
Collapse
|
6
|
The complete genome sequence of Bacillus velezensis strain GH1-13 reveals agriculturally beneficial properties and a unique plasmid. J Biotechnol 2017; 259:221-227. [PMID: 28690133 DOI: 10.1016/j.jbiotec.2017.06.1206] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 10/19/2022]
Abstract
The bacterial strain Bacillus velezensis GH1-13, isolated from rice paddy soil in Korea, has been shown to promote plant growth and have strong antagonistic activities against pathogens. Here, we report the complete genome sequence of GH1-13, revealing that it possesses a single 4,071,980-bp circular chromosome with 46.2% GC-content. The chromosome encodes 3,930 genes, and we have also identified a unique plasmid in the strain that encodes a further 104 genes (71,628bp and 31.7% GC-content). The genome was found to contain various enzyme-encoding operons, including indole-3-acetic acid (IAA) biosynthesis proteins, 2,3-butanediol dehydrogenase, various non-ribosomal peptide synthetases, and several polyketide synthases. These properties are responsible for the promotion of plant growth and the biosynthesis of secondary metabolites. They therefore have multiple beneficial effects that could be applied to agriculture. Through curing, we found that the unique plasmid of GH1-13 has important roles in the production of phytohormones, such as IAA, and in shaping phenotypic and physiological characteristics. The plasmid therefore likely influences the biological activities of GH1-13. The complete genome sequence of B. velezensis GH1-13 contributes to our understanding of this beneficial strain and will encourage research into its development for agricultural or biotechnological applications, enhancing productivity and crop quality.
Collapse
|