1
|
Weyna AAW, Andreasen VA, Burrell CE, Kunkel MR, Radisic R, Goodwin CC, Fenton H, Dugovich BS, Poulson RL, Ruder MG, Yabsley MJ, Sanchez S, Nemeth NM. Causes of morbidity and mortality in wild cottontail rabbits in the eastern United States, 2013-2022. J Vet Diagn Invest 2024; 36:655-665. [PMID: 38853709 PMCID: PMC11457750 DOI: 10.1177/10406387241259000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Interest in causes of mortality of free-ranging, native North American lagomorphs has grown with the emergence of rabbit hemorrhagic disease virus 2 (RHDV2). Over the years 2013-2022, the Southeastern Cooperative Wildlife Disease Study received 119 Sylvilagus spp. case submissions from the central and eastern United States, comprising 147 rabbits. Most (86%) of these submissions occurred after detecting RHDV2 in the United States in 2020. Laboratory data from these rabbits were retrospectively evaluated for major causes, contributors to mortality, and pathogen detections. Gross and histologic examination was performed for 112 rabbits. Common primary causes of death included trauma (n = 49), bacterial disease (n = 31), emaciation (n = 6), and parasitism (n = 6). Among the 32 rabbits with bacterial disease, 12 were diagnosed with tularemia and 7 with pasteurellosis. Rabbits with pasteurellosis had disseminated abscessation, septicemia, and/or polyserositis. Less commonly, cutaneous fibroma (n = 2), notoedric mange (n = 2), encephalitozoonosis (n = 2), neoplasia (round-cell sarcoma; n = 1), and congenital abnormalities (n = 1) were diagnosed. RHDV2 was not detected in 123 rabbits tested. Although RHDV2 has not been detected in wild lagomorphs in the eastern United States, detections in domestic rabbits from the region emphasize the need for continued surveillance. Furthermore, continued surveillance for Francisella tularensis informs public health risk. Overall, increased knowledge of Sylvilagus spp. health furthers our understanding of diseases affecting these important prey and game species.
Collapse
Affiliation(s)
- Alisia A. W. Weyna
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Victoria A. Andreasen
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Caitlin E. Burrell
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Melanie R. Kunkel
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Rebecca Radisic
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Chloe C. Goodwin
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Heather Fenton
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Brian S. Dugovich
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Mark G. Ruder
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Michael J. Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Susan Sanchez
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Nicole M. Nemeth
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Moradkasani S, Maurin M, Farrokhi AS, Esmaeili S. Development, Strategies, and Challenges for Tularemia Vaccine. Curr Microbiol 2024; 81:126. [PMID: 38564047 DOI: 10.1007/s00284-024-03658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Francisella tularensis is a facultative intracellular bacterial pathogen that affects both humans and animals. It was developed into a biological warfare weapon as a result. In this article, the current status of tularemia vaccine development is presented. A live-attenuated vaccine that was designed over 50 years ago using the less virulent F. tularensis subspecies holarctica is the only prophylactic currently available, but it has not been approved for use in humans or animals. Other promising live, killed, and subunit vaccine candidates have recently been developed and tested in animal models. This study will investigate some possible vaccines and the challenges they face during development.
Collapse
Affiliation(s)
- Safoura Moradkasani
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Max Maurin
- CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, Universite Grenoble Alpes, 38000, Grenoble, France
| | | | - Saber Esmaeili
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran.
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Hofmeister E, Clark E, Lund M, Grear D. Serologic Survey of Selected Arthropod-Borne Pathogens in Free-Ranging Snowshoe Hares (Lepus americanus) Captured in Northern Michigan, USA. J Wildl Dis 2024; 60:375-387. [PMID: 38345469 DOI: 10.7589/jwd-d-23-00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 11/14/2023] [Indexed: 04/06/2024]
Abstract
Snowshoe hares (Lepus americanus) in the Upper Peninsula (UP) of Michigan, USA, occupy the southern periphery of the species' range and are vulnerable to climate change. In the eastern UP, hares are isolated by the Great Lakes, potentially exacerbating exposure to climate-change-induced habitat alterations. Climate change is also measurably affecting distribution and prevalence of vector-borne pathogens in North America, and increases in disease occurrence and prevalence can be one signal of climate-stressed wildlife populations. We conducted a serosurvey for vector-borne pathogens in snowshoe hares that were captured in the Hiawatha National Forest in the eastern UP of Michigan, USA, 2016-2017. The most commonly detected antibody response was to the mosquito-borne California serogroup snowshoe hare virus (SSHV). Overall, 24 (51%) hares screened positive for SSHV antibodies and of these, 23 (96%) were confirmed positive by plaque reduction neutralization test. We found a positive association between seroprevalence of SSHV and live weight of snowshoe hares. Additionally, we detected a significant effect of ecological land type group on seroprevalence of SSHV, with strong positive support for a group representing areas that tend to support high numbers of hares (i.e., acidic mineral containing soils with cedar, mixed swamp conifers, tamarack and balsam fir as common overstory vegetation). We also detected and confirmed antibodies for Jamestown Canyon virus and Silverwater virus in a single hare each. We did not detect antibodies to other zoonotic vector-borne pathogens, including Lacrosse encephalitis virus, West Nile virus, Borrelia burgdorferi, Powassan virus, and Francisella tularensis. These results provide a baseline for future serological studies of vector-transmitted diseases that may increase climate vulnerability of snowshoe hares in the UP of Michigan, as well as pose a climate-related zoonotic risk.
Collapse
Affiliation(s)
- Erik Hofmeister
- US Geological Survey National Wildlife Health Center, 6006 Schroeder Road, Madison, WI 53711, USA
- These authors contributed equally to the study
| | - Eric Clark
- The Wildlife Program of the Sault Ste. Marie Tribe of Chippewa Indians, 2428 Shunk Road, Sault Ste. Marie, MI 49783, USA
- Center for Cooperative Ecological Resilience, 480 Wilson Road, Michigan State University, East Lansing, MI 48824, USA
- These authors contributed equally to the study
| | - Melissa Lund
- US Geological Survey National Wildlife Health Center, 6006 Schroeder Road, Madison, WI 53711, USA
| | - Daniel Grear
- US Geological Survey National Wildlife Health Center, 6006 Schroeder Road, Madison, WI 53711, USA
| |
Collapse
|
4
|
Schütz SD, Brackmann M, Liechti N, Moser M, Wittwer M, Bruggmann R. Functional characterization of Francisella tularensis subspecies holarctica genotypes during tick cell and macrophage infections using a proteogenomic approach. Front Cell Infect Microbiol 2024; 14:1355113. [PMID: 38500499 PMCID: PMC10944910 DOI: 10.3389/fcimb.2024.1355113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Tularemia is a vector-borne disease caused by the Gram-negative bacterium Francisella tularensis. Known hosts and vectors in Europe are hare and ticks. F. tularensis is transmitted from ticks and animals, but also from the hydrotelluric environment and the consumption of contaminated water or food. A changing climate expands the range in which ticks can live and consequently might contribute to increasing case numbers of tularemia. Two subspecies of F. tularensis are human pathogenic. Francisella tularensis tularensis (Ftt) is endemic in North America, while Francisella tularensis holarctica (Fth) is the only subspecies causing tularemia in Europe. Ft is classified as a category A bioterrorism agent due to its low infectious dose, multiple modes of transmission, high infectivity and potential for airborne transmission and has become a global public health concern. In line with the European survey and previous phylogenetic studies, Switzerland shows the co-distribution of B.6 and B.12 strains with different geographical distribution and prevalence within the country. To establish itself in different host environments of ticks and mammals, F. tularensis presumably undergoes substantial changes on the transcriptomics and proteomic level. Here we investigate the transcriptomic and proteomic differences of five strains of Fth upon infection of rabbit macrophages and tick cells.
Collapse
Affiliation(s)
- Sara Doina Schütz
- Interfaculty Bioinformatics Unit, University of Bern and Swiss Institute of Bioinformatics, Bern, Switzerland
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Nicole Liechti
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Michel Moser
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Matthias Wittwer
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern and Swiss Institute of Bioinformatics, Bern, Switzerland
| |
Collapse
|
5
|
Herron ICT, Laws TR, Nelson M. Marmosets as models of infectious diseases. Front Cell Infect Microbiol 2024; 14:1340017. [PMID: 38465237 PMCID: PMC10921895 DOI: 10.3389/fcimb.2024.1340017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Animal models of infectious disease often serve a crucial purpose in obtaining licensure of therapeutics and medical countermeasures, particularly in situations where human trials are not feasible, i.e., for those diseases that occur infrequently in the human population. The common marmoset (Callithrix jacchus), a Neotropical new-world (platyrrhines) non-human primate, has gained increasing attention as an animal model for a number of diseases given its small size, availability and evolutionary proximity to humans. This review aims to (i) discuss the pros and cons of the common marmoset as an animal model by providing a brief snapshot of how marmosets are currently utilized in biomedical research, (ii) summarize and evaluate relevant aspects of the marmoset immune system to the study of infectious diseases, (iii) provide a historical backdrop, outlining the significance of infectious diseases and the importance of developing reliable animal models to test novel therapeutics, and (iv) provide a summary of infectious diseases for which a marmoset model exists, followed by an in-depth discussion of the marmoset models of two studied bacterial infectious diseases (tularemia and melioidosis) and one viral infectious disease (viral hepatitis C).
Collapse
Affiliation(s)
- Ian C. T. Herron
- CBR Division, Defence Science and Technology Laboratory (Dstl), Salisbury, United Kingdom
| | | | | |
Collapse
|
6
|
Kovach AI, Cheeseman AE, Cohen JB, Rittenhouse CD, Whipps CM. Separating Proactive Conservation from Species Listing Decisions. ENVIRONMENTAL MANAGEMENT 2022; 70:710-729. [PMID: 36100759 PMCID: PMC9470069 DOI: 10.1007/s00267-022-01713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Proactive Conservation is a paradigm of natural resource management in the United States that encourages voluntary, collaborative efforts to restore species before they need to be protected through government regulations. This paradigm is widely used to conserve at-risk species today, and when used in conjunction with the Policy for Evaluation of Conservation Efforts (PECE), it allows for successful conservation actions to preclude listing of species under the Endangered Species Act (ESA). Despite the popularity of this paradigm, and recent flagship examples of its use (e.g., greater sage grouse, Centrocercus urophasianus), critical assessments of the outcomes of Proactive Conservation are lacking from the standpoint of species status and recovery metrics. Here, we provide such an evaluation, using the New England cottontail (Sylvilagus transitionalis), heralded as a success of Proactive Conservation efforts in the northeastern United States, as a case study. We review the history and current status of the species, based on the state of the science, in the context of the Conservation Initiative, and the 2015 PECE decision not to the list the species under the ESA. In addition to the impacts of the PECE decision on the New England cottontail conservation specifically, our review also evaluates the benefits and limits of the Proactive Conservation paradigm more broadly, and we make recommendations for its role in relation to ESA implementation for the future of at-risk species management. We find that the status and assurances for recovery under the PECE policy, presented at the time of the New England cottontail listing decision, were overly optimistic, and the status of the species has worsened in subsequent years. We suggest that use of PECE to avoid listing may occur because of the perception of the ESA as a punitive law and a misconception that it is a failure, although very few listed species have gone extinct. Redefining recovery to decouple it from delisting and instead link it to probability of persistence under recommended conservation measures would remove some of the stigma of listing, and it would strengthen the role of Species Status Assessments in endangered species conservation.
Collapse
Affiliation(s)
- Adrienne I Kovach
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA.
| | - Amanda E Cheeseman
- South Dakota State University, Natural Resource Management, Brookings, SD, USA
| | - Jonathan B Cohen
- Department of Environmental Biology, State University of New York, College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Chadwick D Rittenhouse
- Department of Natural Resources and the Environment, University of Connecticut, Wildlife and Fisheries Conservation Center, Storrs, CT, USA
| | - Christopher M Whipps
- Department of Environmental Biology, State University of New York, College of Environmental Science and Forestry, Syracuse, NY, USA
| |
Collapse
|
7
|
Differential Immune Response Following Intranasal and Intradermal Infection with Francisella tularensis: Implications for Vaccine Development. Microorganisms 2021; 9:microorganisms9050973. [PMID: 33946283 PMCID: PMC8145380 DOI: 10.3390/microorganisms9050973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Francisella tularensis (Ft) is a Gram-negative, facultative intracellular coccobacillus that is the etiological agent of tularemia. Interestingly, the disease tularemia has variable clinical presentations that are dependent upon the route of infection with Ft. Two of the most likely routes of Ft infection include intranasal and intradermal, which result in pneumonic and ulceroglandular tularemia, respectively. While there are several differences between these two forms of tularemia, the most notable disparity is between mortality rates: the mortality rate following pneumonic tularemia is over ten times that of the ulceroglandular disease. Understanding the differences between intradermal and intranasal Ft infections is important not only for clinical diagnoses and treatment but also for the development of a safe and effective vaccine. However, the immune correlates of protection against Ft, especially within the context of infection by disparate routes, are not yet fully understood. Recent advances in different animal models have revealed new insights in the complex interplay of innate and adaptive immune responses, indicating dissimilar patterns in both responses following infection with Ft via different routes. Further investigation of these differences will be crucial to predicting disease outcomes and inducing protective immunity via vaccination or natural infection.
Collapse
|
8
|
Matz LM, Petrosino JF. A study of innate immune kinetics reveals a role for a chloride transporter in a virulent Francisella tularensis type B strain. Microbiologyopen 2021; 10:e1170. [PMID: 33970545 PMCID: PMC8483402 DOI: 10.1002/mbo3.1170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/26/2022] Open
Abstract
Tularemia is a zoonotic disease of global proportions. Francisella tularensis subspecies tularensis (type A) and holarctica (type B) cause disease in healthy humans, with type A infections resulting in higher mortality. Repeated passage of a type B strain in the mid-20th century generated the Live Vaccine Strain (LVS). LVS remains unlicensed, does not protect against high inhalational doses of type A, and its exact mechanisms of attenuation are poorly understood. Recent data suggest that live attenuated vaccines derived from type B may cross-protect against type A. However, there is a dearth of knowledge regarding virulent type B pathogenesis and its capacity to stimulate the host's innate immune response. We therefore sought to increase our understanding of virulent type B in vitro characteristics using strain OR96-0246 as a model. Adding to our knowledge of innate immune kinetics in macrophages following infection with virulent type B, we observed robust replication of strain OR96-0246 in murine and human macrophages, reduced expression of pro-inflammatory cytokine genes from "wild type" type B-infected macrophages compared to LVS, and delayed macrophage cell death suggesting that virulent type B may suppress macrophage activation. One disruption in LVS is in the gene encoding the chloride transporter ClcA. We investigated the role of ClcA in macrophage infection and observed a replication delay in a clcA mutant. Here, we propose its role in acid tolerance. A greater understanding of LVS attenuation may reveal new mechanisms of pathogenesis and inform strategies toward the development of an improved vaccine against tularemia.
Collapse
Affiliation(s)
- Lisa M. Matz
- The Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTXUSA
- The Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTXUSA
- Baylor College of MedicineHoustonTXUSA
| | - Joseph F. Petrosino
- The Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTXUSA
- The Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTXUSA
- Baylor College of MedicineHoustonTXUSA
| |
Collapse
|
9
|
Mechanisms Affecting the Acquisition, Persistence and Transmission of Francisella tularensis in Ticks. Microorganisms 2020; 8:microorganisms8111639. [PMID: 33114018 PMCID: PMC7690693 DOI: 10.3390/microorganisms8111639] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 01/06/2023] Open
Abstract
Over 600,000 vector-borne disease cases were reported in the United States (U.S.) in the past 13 years, of which more than three-quarters were tick-borne diseases. Although Lyme disease accounts for the majority of tick-borne disease cases in the U.S., tularemia cases have been increasing over the past decade, with >220 cases reported yearly. However, when comparing Borrelia burgdorferi (causative agent of Lyme disease) and Francisella tularensis (causative agent of tularemia), the low infectious dose (<10 bacteria), high morbidity and mortality rates, and potential transmission of tularemia by multiple tick vectors have raised national concerns about future tularemia outbreaks. Despite these concerns, little is known about how F. tularensis is acquired by, persists in, or is transmitted by ticks. Moreover, the role of one or more tick vectors in transmitting F. tularensis to humans remains a major question. Finally, virtually no studies have examined how F. tularensis adapts to life in the tick (vs. the mammalian host), how tick endosymbionts affect F. tularensis infections, or whether other factors (e.g., tick immunity) impact the ability of F. tularensis to infect ticks. This review will assess our current understanding of each of these issues and will offer a framework for future studies, which could help us better understand tularemia and other tick-borne diseases.
Collapse
|
10
|
Abstract
Periprosthetic infections occur in approximately 0.8% to 1.9% of all total knee arthroplasties (TKAs). Even with these low rates, it is rare to find a zoonotic bacterium causing a periprosthetic infection. In this case report, the authors identify the second documented case of a total joint infection with Francisella tularensis in the world and the first in the United States. A 58-year-old man underwent a left TKA in 1994 and a right TKA in 1997 for severe primary bilateral knee osteoarthrosis. In 2015, he underwent polyethylene exchange for polyethylene wear. Subsequently, he developed repeated effusion without fever or constitutional signs of infection. One aspiration was sent for culture and grew F tularensis. He was treated with doxycycline for chronic suppression and currently has no signs of infection. Total joint implantation rates are expected to rise, with 3.5 million procedures projected to be performed annually by the year 2030 vs 450,000 procedures performed in 2005. With the increased number of operations, it is likely that zoonotic infections will increase as well. Thus, rare zoonotic bacterial infections as well as chronic outdoor exposure in the presence of persistent joint swelling should be considered when obtaining a patient history. [Orthopedics. 2020; 43(1):e54-e56.].
Collapse
|
11
|
Roberts LM, Powell DA, Frelinger JA. Adaptive Immunity to Francisella tularensis and Considerations for Vaccine Development. Front Cell Infect Microbiol 2018; 8:115. [PMID: 29682484 PMCID: PMC5898179 DOI: 10.3389/fcimb.2018.00115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis is an intracellular bacterium that causes the disease tularemia. There are several subspecies of F. tularensis whose ability to cause disease varies in humans. The most virulent subspecies, tularensis, is a Tier One Select Agent and a potential bioweapon. Although considerable effort has made to generate efficacious tularemia vaccines, to date none have been licensed for use in the United States. Despite the lack of a tularemia vaccine, we have learned a great deal about the adaptive immune response the underlies protective immunity. Herein, we detail the animal models commonly used to study tularemia and their recapitulation of human disease, the field's current understanding of vaccine-mediated protection, and discuss the challenges associated with new vaccine development.
Collapse
Affiliation(s)
- Lydia M Roberts
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| | - Daniel A Powell
- Department of Immunobiology and Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, United States
| | - Jeffrey A Frelinger
- Department of Immunobiology and Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
12
|
Abstract
Tularemia is a zoonotic disease that occurs in the Northern Hemisphere caused by the gammabacterium Francisella tularensis. The most severe form of human tularemia occurs in the central USA and involves a rabbit enzootic cycle, ixodid tick vectors, and F. tularensis subspecies tularensis genotype A1. Enzootic tularemia is thought to have a spring-summer seasonality corresponding to the questing activity of its primary tick vectors. Domestic cats, another common incidental host, acquire the infection by preying on infected rabbits. The seasonality of tularemia in cats, which demonstrate a bimodal seasonal incidence curve with peaks in the spring and late summer-fall, may serve as a surrogate for the seasonality of the disease in its enzootic host. Human tularemia shows a unimodal late spring, early summer peak, which correlates to the seasonal questing activity of tick vectors of human tularemia. This difference in seasonality suggests that different tick species or tick life stages are involved in maintenance of the enzootic rabbit-tick cycle.
Collapse
|
13
|
Brown VR, Adney DR, Olea-Popelka F, Bowen RA. Prior Inoculation with Type B Strains of Francisella tularensis Provides Partial Protection against Virulent Type A Strains in Cottontail Rabbits. PLoS One 2015; 10:e0140723. [PMID: 26474413 PMCID: PMC4608750 DOI: 10.1371/journal.pone.0140723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022] Open
Abstract
Francisella tularensis is a highly virulent bacterium that is capable of causing severe disease (tularemia) in a wide range of species. This organism is characterized into two distinct subspecies: tularensis (type A) and holarctica (type B) which vary in several crucial ways, with some type A strains having been found to be considerably more virulent in humans and laboratory animals. Cottontail rabbits have been widely implicated as a reservoir species for this subspecies; however, experimental inoculation in our laboratory revealed type A organisms to be highly virulent, resulting in 100% mortality following challenge with 50-100 organisms. Inoculation of cottontail rabbits with the same number of organisms from type B strains of bacteria was found to be rarely lethal and to result in a robust humoral immune response. The objective of this study was to characterize the protection afforded by a prior challenge with type B strains against a later inoculation with a type A strain in North American cottontail rabbits (Sylvilagus spp). Previous infection with a type B strain of organism was found to lengthen survival time and in some cases prevent death following inoculation with a type A2 strain of F. tularensis. In contrast, inoculation of a type A1b strain was uniformly lethal in cottontail rabbits irrespective of a prior type B inoculation. These findings provide important insight about the role cottontail rabbits may play in environmental maintenance and transmission of this organism.
Collapse
Affiliation(s)
- Vienna R. Brown
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, 80523, United States of America
| | - Danielle R. Adney
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, 80523, United States of America
| | - Francisco Olea-Popelka
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, 80523, United States of America
| | - Richard A. Bowen
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, 80523, United States of America
- * E-mail:
| |
Collapse
|