1
|
Novel Bat Lyssaviruses Identified by Nationwide Passive Surveillance in Taiwan, 2018–2021. Viruses 2022; 14:v14071562. [PMID: 35891542 PMCID: PMC9316062 DOI: 10.3390/v14071562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Bat lyssaviruses were identified in Taiwan’s bat population during 2016–2017. The lyssavirus surveillance system was continuously conducted to understand the epidemiology. Through this system, the found dead bats were collected for lyssavirus detection by direct fluorescent antibody test and reverse transcription polymerase chain reaction. Three bats were identified as positive during 2018–2021. A novel lyssavirus, designated as Taiwan bat lyssavirus 2, was detected in a Nyctalus plancyi velutinus. This lyssavirus had less than 80% nucleotide identity in the nucleoprotein (N) gene with other lyssavirus species, forming a separate branch in the phylogenetic analysis. The other two cases were identified in Pipistrellus abramus (Japanese pipistrelles); they were identified to be similar to the former lyssavirus identified in 2016–2017, which was renominated as Taiwan bat lyssavirus 1 (TWBLV-1) in this study. Even though one of the TWBLV-1 isolates showed high genetic diversity in the N gene compared with other TWBLV-1 isolates, it may be a TWBLV-1 variant but not a new species based on its high amino acid identities in the nucleoprotein, same host species, and same geographic location as the other TWBLV-1.
Collapse
|
2
|
Hsu CH, Lin TE. Exploring the participation motivations of ongoing and former citizen scientists in Taiwan Roadkill Observation Network. J Nat Conserv 2021. [DOI: 10.1016/j.jnc.2021.126055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Thomas EM, Nekaris KAI, Imron MA, Cassey P, Shepherd CR, Nijman V. Shifts of trade in Javan ferret badgers Melogale orientalis from wildlife markets to online platforms: implications for conservation policy, human health and monitoring. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Wildlife trade is increasingly impeding the conservation of imperilled wildlife and is a potential threat to human health. Ferret badgers are extensively traded in China, although the trends, drivers and health implications of ferret badger trade in other parts of Asia remain poorly known. Here, we focus on the pet trade of a little known endemic small carnivore species, Javan ferret badger Melogale orientalis in Indonesia, over a 10 yr period (2011-2020). The Javan ferret badger is listed as Least Concern on the IUCN Red List of Threatened Species with an unknown population trend. We aimed to gain insight into the magnitude of this trade, its purposes, price trends, distribution records, health risks and shifts to online platforms. We documented 44 ferret badgers in 11 wildlife markets in Java and Bali and 100 ferret badgers for sale on online platforms. We observed a shift in trade from traditional animal markets only, to trade in these markets as well as online. Asking prices, corrected for inflation, declined significantly from ~USD 37 in 2012 to ~USD 22 in 2020, and were related to the purchasing power in cities where trade occurred. Widespread sale of the species highlights that enforcement continues to be overly passive as any trade in the species is illegal. We recommend that the Javan ferret badger be afforded full national protection and prioritised in monitoring efforts to establish its true conservation status. Additionally, concerted efforts are needed to determine if online trade poses a risk to conservation and human health.
Collapse
Affiliation(s)
- EM Thomas
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - KAI Nekaris
- Oxford Wildlife Trade Research Group, Oxford Brookes University, Oxford OX3 0BP, UK
| | - MA Imron
- Faculty of Forestry, Universitas Gajah Mada, Yogyakarta 55281, Indonesia
| | - P Cassey
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - CR Shepherd
- Monitor Conservation Research Society, Big Lake Ranch, British Columbia V0L 1G0, Canada
| | - V Nijman
- Oxford Wildlife Trade Research Group, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
4
|
Ferret badger rabies in Zhejiang, Jiangxi and Taiwan, China. Arch Virol 2018; 164:579-584. [PMID: 30417198 DOI: 10.1007/s00705-018-4082-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/09/2018] [Indexed: 10/27/2022]
Abstract
Ferret badger (FB, Melogale moschata) rabies is an increasing public health threat to humans, with FBs being a major reservoir and vector of rabies in China. Based on 152 published nucleotide sequences of the FB rabies virus (RABV) nucleoprotein, phylogenetic analysis revealed them to be clustered into six FB-related lineages, FB-I to FB-VI. The genetic features of members of lineage FB-VI suggest that cross-species transmission occurs between FBs and dogs. Here, we describe the phylogenetic relationships between FB-RABVs, their geographic segregation, and their evolutionary dynamics in epizootic regions.
Collapse
|
5
|
Shih TH, Chiang JT, Wu HY, Inoue S, Tsai CT, Kuo SC, Yang CY, Fei CY. Human Exposure to Ferret Badger Rabies in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071347. [PMID: 29954098 PMCID: PMC6068547 DOI: 10.3390/ijerph15071347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 11/16/2022]
Abstract
On 17 July 2013, Taiwan confirmed multiple cases of the rabies virus (RABV) in the wild Taiwan Ferret badger (TFB) (Melogale moschata) member of the family Mustelidae. This study aims at investigating the risk factors for human exposure to rabid TFBs. Statistical inference based on Pearson correlation showed that there was a strong positive correlation between the total number of positive TFB rabies cases and the number of rabid TFBs involved with human activities in 81 enzootic townships (r = 0.91; p < 0.001). A logistic regression analysis indicated that the risk probability of a human being bitten by rabid TFBs was significantly higher when there were no dogs around (35.55% versus 6.17% (indoors, n = 171, p = 0.0001), and 52.00% versus 5.26% (outdoors, n = 44, p = 0.021)), and whether or not there was a dog around was the only crucial covariate that was statistically significantly related to the risk of a human being bitten. In conclusion, this study showed the value of having vaccinated pets as a deterrent to TFB encounters and as a buffer to prevent human exposure to rabid TFBs. The presence of unvaccinated pets could become a significant risk factor in the longer term if rabies isn’t controlled in TFBs because of the spillover between the sylvatic and urban cycles of rabies. Consequently, raising dogs, as well as keeping rabies vaccinations up-to-date for them, can be considered an effective preventive strategy to reduce the risk for human exposure to rabid TFBs.
Collapse
Affiliation(s)
- Tai-Hwa Shih
- Bureau of Animal and Plant Health Inspection and Quarantine, Taipei 10070, Taiwan.
| | - Jeng-Tung Chiang
- Department of Statistics, National Chengchi University, Taipei 11605, Taiwan.
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung-Hsing University, Taichung 40227, Taiwan.
| | - Satoshi Inoue
- National Institute of Infectious Disease, Tokyo 162-8640, Japan.
| | - Cheng-Ta Tsai
- Bureau of Animal and Plant Health Inspection and Quarantine, Taipei 10070, Taiwan.
| | - Shih-Chiang Kuo
- Bureau of Animal and Plant Health Inspection and Quarantine, Taipei 10070, Taiwan.
| | - Cheng-Yao Yang
- Agricultural Technology Research Institute, Hsinchu 30093, Taiwan.
| | - Chang-Young Fei
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
6
|
|
7
|
Smith TG, Millien M, Vos A, Fracciterne FA, Crowdis K, Chirodea C, Medley A, Chipman R, Qin Y, Blanton J, Wallace R. Evaluation of immune responses in dogs to oral rabies vaccine under field conditions. Vaccine 2017; 37:4743-4749. [PMID: 29054727 DOI: 10.1016/j.vaccine.2017.09.096] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022]
Abstract
During the 20th century parenteral vaccination of dogs at central-point locations was the foundation of successful canine rabies elimination programs in numerous countries. However, countries that remain enzootic for canine rabies have lower infrastructural development compared to countries that have achieved elimination, which may make traditional vaccination methods less successful. Alternative vaccination methods for dogs must be considered, such as oral rabies vaccine (ORV). In 2016, a traditional mass dog vaccination campaign in Haiti was supplemented with ORV to improve vaccination coverage and to evaluate the use of ORV in dogs. Blisters containing live-attenuated, vaccine strain SPBNGAS-GAS were placed in intestine bait and distributed to dogs by hand. Serum was collected from 107 dogs, aged 3-12 months with no reported prior rabies vaccination, pre-vaccination and from 78/107 dogs (72.9%) 17 days post-vaccination. The rapid florescent focus inhibition test (RFFIT) was used to detect neutralizing antibodies and an ELISA to detect rabies binding antibodies. Post-vaccination, 38/41 (92.7%) dogs that received parenteral vaccine had detectable antibody (RFFIT >0.05 IU/mL), compared to 16/27 (59.3%, p < 0.01) dogs that received ORV or 21/27 (77.8%) as measured by ELISA (>40% blocking, p < 0.05). The fate of 291 oral vaccines was recorded; 283 dogs (97.2%) consumed the bait; 272 dogs (93.4%) were observed to puncture the blister, and only 14 blisters (4.8%) could not be retrieved by vaccinators and were potentially left in the environment. Pre-vaccination antibodies (RFFIT >0.05 IU/mL) were detected in 10/107 reportedly vaccine-naïve dogs (9.3%). Parenteral vaccination remains the most reliable method for ensuring adequate immune response in dogs, however ORV represents a viable strategy to supplement existing parental vaccination campaigns in hard-to-reach dog populations. The hand-out model reduces the risk of unintended contact with ORV through minimizing vaccine blisters left in the community.
Collapse
Affiliation(s)
- Todd G Smith
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30329, USA
| | - Max Millien
- Ministry of Agriculture, Natural Resources, and Rural Development, Port-au-Prince, Haiti
| | - Ad Vos
- IDT-Biologika GmbH, 06861 Dessau-Rosslau, Germany
| | | | | | | | - Alexandra Medley
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30329, USA
| | - Richard Chipman
- United States Department of Agriculture, Wildlife Services, National Rabies Management Program, Concord, NH, USA
| | - Yunlong Qin
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30329, USA
| | - Jesse Blanton
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30329, USA
| | - Ryan Wallace
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30329, USA
| |
Collapse
|
8
|
Yang DK, Kim HH, Lee KK, Yoo JY, Seomun H, Cho IS. Mass vaccination has led to the elimination of rabies since 2014 in South Korea. Clin Exp Vaccine Res 2017; 6:111-119. [PMID: 28775975 PMCID: PMC5540959 DOI: 10.7774/cevr.2017.6.2.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Rabies is one of the most fatal diseases, but it is 100% preventable in animals by vaccination. In this study, we present the epidemiological features of, and national preventive measures against, rabies in Korea. MATERIALS AND METHODS Data related to rabies and the population density of raccoon dogs in Korea were collected from the Animal and Plant Quarantine Agency, the Korean Centers for Disease Control and Prevention, and the National Institute of Environmental Research. Rabies diagnosis was confirmed with a fluorescent antibody test using brain samples of animals in accordance with the procedures described by the World Organization for Animal Health. Serological assays for dogs and cattle were conducted using the fluorescent antibody virus neutralization test. RESULTS From 1993 to 2016, a total of seven human rabies cases and 437 animal rabies cases in five different species were reported. An increase in the distribution of bait vaccine seemed to be related to a dramatic decrease in rabies prevalence in endemic rabies regions. Two Korean provinces and the capital city, Seoul, were involved in rabies outbreaks. Korean rabies strains are most closely related to the eastern Chinese strain belonging to the Arctic-like lineage. The yearly seropositive rates ranged from 50.4% to 81.2% in dogs and from 25% to 60.5% in cattle residing in endemic rabies regions. CONCLUSION This study indicates that national preventive measures, including mass vaccination and distribution of bait vaccines, have contributed to a substantial decrease in the number of rabies cases in Korea.
Collapse
Affiliation(s)
- Dong-Kun Yang
- Viral Disease Division, Animal and Plant Quarantine Agency, MAFRA, Gimcheon, Korea
| | - Ha-Hyun Kim
- Viral Disease Division, Animal and Plant Quarantine Agency, MAFRA, Gimcheon, Korea
| | - Kyoung-Ki Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, MAFRA, Gimcheon, Korea
| | - Jae-Young Yoo
- Viral Disease Division, Animal and Plant Quarantine Agency, MAFRA, Gimcheon, Korea
| | - Hong Seomun
- National Institute of Biological Resources, Ministry of Environment, Incheon, Korea
| | - In-Soo Cho
- Viral Disease Division, Animal and Plant Quarantine Agency, MAFRA, Gimcheon, Korea
| |
Collapse
|
9
|
Troupin C, Dacheux L, Tanguy M, Sabeta C, Blanc H, Bouchier C, Vignuzzi M, Duchene S, Holmes EC, Bourhy H. Large-Scale Phylogenomic Analysis Reveals the Complex Evolutionary History of Rabies Virus in Multiple Carnivore Hosts. PLoS Pathog 2016; 12:e1006041. [PMID: 27977811 PMCID: PMC5158080 DOI: 10.1371/journal.ppat.1006041] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/03/2016] [Indexed: 12/25/2022] Open
Abstract
The natural evolution of rabies virus (RABV) provides a potent example of multiple host shifts and an important opportunity to determine the mechanisms that underpin viral emergence. Using 321 genome sequences spanning an unprecedented diversity of RABV, we compared evolutionary rates and selection pressures in viruses sampled from multiple primary host shifts that occurred on various continents. Two major phylogenetic groups, bat-related RABV and dog-related RABV, experiencing markedly different evolutionary dynamics were identified. While no correlation between time and genetic divergence was found in bat-related RABV, the evolution of dog-related RABV followed a generally clock-like structure, although with a relatively low evolutionary rate. Subsequent molecular clock dating indicated that dog-related RABV likely underwent a rapid global spread following the intensification of intercontinental trade starting in the 15th century. Strikingly, although dog RABV has jumped to various wildlife species from the order Carnivora, we found no clear evidence that these host-jumping events involved adaptive evolution, with RABV instead characterized by strong purifying selection, suggesting that ecological processes also play an important role in shaping patterns of emergence. However, specific amino acid changes were associated with the parallel emergence of RABV in ferret-badgers in Asia, and some host shifts were associated with increases in evolutionary rate, particularly in the ferret-badger and mongoose, implying that changes in host species can have important impacts on evolutionary dynamics. Zoonoses account for most recently emerged infectious diseases of humans, although little is known about the evolutionary mechanisms involved in cross-species virus transmission. Understanding the evolutionary patterns and processes that underpin such cross-species transmission is of importance for predicting the spread of zoonotic infections, and hence to their ultimate control. We present a large-scale and detailed reconstruction of the evolutionary history of rabies virus (RABV) in domestic and wildlife animal species. RABV is of particular interest as it is capable of infecting many mammals but, paradoxically, is only maintained in distinct epidemiological cycles associated with animal species from the orders Carnivora and Chiroptera. We show that bat-related RABV and dog-related RABV have experienced very different evolutionary dynamics, and that host jumps are sometimes characterized by significant increases in evolutionary rate. Among Carnivora, the association between RABV and particular host species most likely arose from a combination of the historical human-mediated spread of the virus and jumps into new primary host species. In addition, we show that changes in host species are associated with multiple evolutionary pathways including the occurrence of host-specific parallel evolution. Overall, our data indicate that the establishment of dog-related RABV in new carnivore hosts may only require subtle adaptive evolution.
Collapse
Affiliation(s)
- Cécile Troupin
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Laurent Dacheux
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Marion Tanguy
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
- Institut Pasteur, Genomics Platform, Paris, France
| | - Claude Sabeta
- Agricultural Research Council, Onderstepoort Veterinary Institute, OIE Rabies Reference Laboratory, Pretoria, South Africa
| | - Hervé Blanc
- Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Viral Populations and Pathogenesis Unit, Paris, France
| | | | - Marco Vignuzzi
- Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Viral Populations and Pathogenesis Unit, Paris, France
| | - Sebastián Duchene
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
- Centre for Systems Genomics, University of Melbourne, Parkville, Victoria, Australia
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Hervé Bourhy
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
- * E-mail:
| |
Collapse
|