1
|
Sgroi G, D'Alessio N, Vada R, Ferroglio E, Vicente J, Veneziano V. The contribution of citizen science in the surveillance of wildlife and related arthropods. Parasitology 2023; 150:1089-1095. [PMID: 37929599 PMCID: PMC10801373 DOI: 10.1017/s0031182023001038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Environmental and anthropogenic factors may significantly affect the diffusion of wild animals, enhancing the interface of human–wildlife interactions and driving the spread of pathogens and vector-borne diseases between animals and humans. However, in the last decade, the involvement of citizens in scientific research (the so-called citizen science approach, henceforth abbreviated as CS) provided a network of large-scale and cost-effective surveillance programmes of wildlife populations and their related arthropod species. Therefore, this review aims to illustrate different methods and tools used in CS studies, by arguing the main advantages and considering the limitations of this approach. The CS approach has proven to be an effective method for establishing density and distribution of several wild animal species, in urban, peri-urban and rural environments, as well a source of information regarding vector–host associations between arthropods and wildlife. Extensive efforts are recommended to motivate citizens to be involved in scientific projects to improve both their and our knowledge of the ecology and diseases of wildlife. Following the One Health paradigm, collaborative and multidisciplinary models for the surveillance of wildlife and related arthropod species should be further developed by harnessing the potentiality of the CS approach.
Collapse
Affiliation(s)
- Giovanni Sgroi
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Portici, Italy
| | - Nicola D'Alessio
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Portici, Italy
- Osservatorio Faunistico Venatorio, Naples, Italy
| | - Rachele Vada
- Department of Veterinary Sciences, University of Turin, Italy
| | - Ezio Ferroglio
- Department of Veterinary Sciences, University of Turin, Italy
| | - Joaquin Vicente
- Instituto de Investigación en Recursos Cinegéticos, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Vincenzo Veneziano
- Osservatorio Faunistico Venatorio, Naples, Italy
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Jameson SB, Cloherty E, Londono-Renteria B, Wesson DM. Chagas Disease in the Southeastern USA. CURRENT TROPICAL MEDICINE REPORTS 2022. [DOI: 10.1007/s40475-022-00260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Poh KC, Evans JR, Skvarla MJ, Machtinger ET. All for One Health and One Health for All: Considerations for Successful Citizen Science Projects Conducting Vector Surveillance from Animal Hosts. INSECTS 2022; 13:492. [PMID: 35735829 PMCID: PMC9225105 DOI: 10.3390/insects13060492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/21/2022]
Abstract
Many vector-borne diseases that affect humans are zoonotic, often involving some animal host amplifying the pathogen and infecting an arthropod vector, followed by pathogen spillover into the human population via the bite of the infected vector. As urbanization, globalization, travel, and trade continue to increase, so does the risk posed by vector-borne diseases and spillover events. With the introduction of new vectors and potential pathogens as well as range expansions of native vectors, it is vital to conduct vector and vector-borne disease surveillance. Traditional surveillance methods can be time-consuming and labor-intensive, especially when surveillance involves sampling from animals. In order to monitor for potential vector-borne disease threats, researchers have turned to the public to help with data collection. To address vector-borne disease and animal conservation needs, we conducted a literature review of studies from the United States and Canada utilizing citizen science efforts to collect arthropods of public health and veterinary interest from animals. We identified common stakeholder groups, the types of surveillance that are common with each group, and the literature gaps on understudied vectors and populations. From this review, we synthesized considerations for future research projects involving citizen scientist collection of arthropods that affect humans and animals.
Collapse
Affiliation(s)
- Karen C. Poh
- Department of Entomology, Penn State University, University Park, PA 16802, USA; (J.R.E.); (M.J.S.); (E.T.M.)
- USDA-ARS Animal Disease Research Unit, Pullman, WA 99164, USA
| | - Jesse R. Evans
- Department of Entomology, Penn State University, University Park, PA 16802, USA; (J.R.E.); (M.J.S.); (E.T.M.)
| | - Michael J. Skvarla
- Department of Entomology, Penn State University, University Park, PA 16802, USA; (J.R.E.); (M.J.S.); (E.T.M.)
| | - Erika T. Machtinger
- Department of Entomology, Penn State University, University Park, PA 16802, USA; (J.R.E.); (M.J.S.); (E.T.M.)
| |
Collapse
|
4
|
Busselman RE, Hamer SA. Chagas Disease Ecology in the United States: Recent Advances in Understanding Trypanosoma cruzi Transmission Among Triatomines, Wildlife, and Domestic Animals and a Quantitative Synthesis of Vector-Host Interactions. Annu Rev Anim Biosci 2021; 10:325-348. [PMID: 34758274 DOI: 10.1146/annurev-animal-013120-043949] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chagas disease, a neglected tropical disease present in the Americas, is caused by the parasite Trypanosoma cruzi and is transmitted by triatomine kissing bug vectors. Hundreds of vertebrate host species are involved in the ecology of Chagas disease. The sylvatic nature of most triatomines found in the United States accounts for high levels of animal infections but few reports of human infections. This review focuses on triatomine distributions and animal infections in the southern United States. A quantitative synthesis of available US data from triatomine bloodmeal analysis studies shows that dogs, humans, and rodents are key taxa for feeding triatomines. Imperfect and unvalidated diagnostic tools in wildlife complicate the study of animal T. cruzi infections, and integrated vector management approaches are needed to reduce parasite transmission in nature. The diversity of animal species involved in Chagas disease ecology underscores the importance of a One Health approach for disease research and management. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Rachel E Busselman
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA;
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA;
| |
Collapse
|
5
|
Huaman JL, Pacioni C, Forsyth DM, Pople A, Hampton JO, Helbig KJ, Carvalho TG. Evaluation of haemoparasite and Sarcocystis infections in Australian wild deer. Int J Parasitol Parasites Wildl 2021; 15:262-269. [PMID: 34277336 PMCID: PMC8261462 DOI: 10.1016/j.ijppaw.2021.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022]
Abstract
Wild animals are natural reservoir hosts for a variety of pathogens that can be transmitted to other wildlife, livestock, other domestic animals, and humans. Wild deer (family Cervidae) in Europe, Asia, and North and South America have been reported to be infected with gastrointestinal and vector-borne parasites. In Australia, wild deer populations have expanded considerably in recent years, yet there is little information regarding which pathogens are present and whether these pathogens pose biosecurity threats to humans, wildlife, livestock, or other domestic animals. To address this knowledge gap, PCR-based screening for five parasitic genera was conducted in blood samples (n = 243) sourced from chital deer (Axis axis), fallow deer (Dama dama), rusa deer (Rusa timorensis) and sambar deer (Rusa unicolor) sampled in eastern Australia. These blood samples were tested for the presence of DNA from Plasmodium spp., Trypanosoma spp., Babesia spp., Theileria spp. and Sarcocystis spp. Further, the presence of antibodies against Babesia bovis was investigated in serum samples (n = 105) by immunofluorescence. In this study, neither parasite DNA nor antibodies were detected for any of the five genera investigated. These results indicate that wild deer are not currently host reservoirs for Plasmodium, Trypanosoma, Babesia, Theileria or Sarcocystis parasites in eastern Australia. We conclude that in eastern Australia, wild deer do not currently play a significant role in the transmission of these parasites. This survey represents the first large-scale molecular study of its type in Australian wild deer and provides important baseline information about the parasitic infection status of these animals. The expanding populations of wild deer throughout Australia warrant similar surveys in other parts of the country and surveillance efforts to continually assess the level of threat wild deer could pose to humans, wildlife, livestock and other domestic animals.
Collapse
Affiliation(s)
- Jose L. Huaman
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Carlo Pacioni
- Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, Heidelberg, Victoria, 3084, Australia
- Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia
| | - David M. Forsyth
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, Orange, New South Wales, 2800, Australia
| | - Anthony Pople
- Invasive Plants & Animals Research, Biosecurity Queensland, Department of Agriculture and Fisheries, Ecosciences Precinct, Brisbane, Queensland, 4102, Australia
| | - Jordan O. Hampton
- Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia
- Ecotone Wildlife, PO Box 76, Inverloch, Victoria, 3996, Australia
| | - Karla J. Helbig
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Teresa G. Carvalho
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| |
Collapse
|
6
|
Beatty NL, Klotz SA. Autochthonous Chagas Disease in the United States: How Are People Getting Infected? Am J Trop Med Hyg 2020; 103:967-969. [PMID: 32602437 DOI: 10.4269/ajtmh.19-0733] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the United States, Chagas disease is diagnosed in less than 1% of the estimated > 300,000 people who have the disease. However, the actual prevalence remains unknown, and these estimates may be wide of the mark (too high or too low). The greater part of those living with the disease acquired the infection in an endemic region of Latin America, but autochthonous transmission in the United States is increasingly being described. These cases are considered rare, and the transmission routes are largely unknown. Although triatomines or "kissing bugs" harbor Trypanosoma cruzi in North America, most autochthonous cases are presumed rather than confirmed exposures to naturally infected kissing bugs. Public knowledge of Chagas is growing, and efforts are underway to provide greater awareness, but what are the risk factors for human transmission of Chagas disease in the United States?
Collapse
Affiliation(s)
- Norman L Beatty
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida.,Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | - Stephen A Klotz
- Division of Infectious Diseases, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
7
|
Gunter SM, Ronca SE, Sandoval M, Coffman K, Leining L, Gorchakov R, Murray KO, Nolan MS. Chagas Disease Infection Prevalence and Vector Exposure in a High-Risk Population of Texas Hunters. Am J Trop Med Hyg 2020; 102:294-297. [PMID: 31872798 DOI: 10.4269/ajtmh.19-0310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chagas disease, caused by the vector-borne parasite Trypanosoma cruzi, remains one of the most significant neglected tropical diseases affecting the Americas. Identifying high-risk populations is important for understanding Chagas disease transmission and directing public health resources. We recently hypothesized that Texas hunters may be at an elevated risk for contracting Chagas disease because of opportunities for vector exposure and contact with blood of infected reservoirs. To assess their unique exposure risks, we conducted a statewide screening program of Texas hunters. A total of 885 study participants were interviewed and tested for T. cruzi infection; 18 screened positive on a rapid, point-of-care test; however, none were found positive through confirmatory testing. We did find a high prevalence of reported direct contact with wildlife blood as well as triatomine and other arthropod disease vectors. This large-scale screening program represents a novel approach to better understand the vector-borne disease risk in this unique population.
Collapse
Affiliation(s)
- Sarah M Gunter
- Section of Pediatric Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Shannon E Ronca
- Section of Pediatric Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Micaela Sandoval
- The University of Texas Health Science Center, School of Public Health, Houston, Texas
| | - Kimberly Coffman
- The University of Texas Health Science Center, School of Public Health, Houston, Texas
| | - Lauren Leining
- The University of Texas Health Science Center, School of Public Health, Houston, Texas.,Section of Pediatric Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Rodion Gorchakov
- Section of Pediatric Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Kristy O Murray
- Section of Pediatric Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Melissa S Nolan
- The University of South Carolina, Arnold School of Public Health, Greenville, South Carolina.,Section of Pediatric Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| |
Collapse
|
8
|
Bern C, Messenger LA, Whitman JD, Maguire JH. Chagas Disease in the United States: a Public Health Approach. Clin Microbiol Rev 2019; 33:e00023-19. [PMID: 31776135 PMCID: PMC6927308 DOI: 10.1128/cmr.00023-19] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Trypanosoma cruzi is the etiological agent of Chagas disease, usually transmitted by triatomine vectors. An estimated 20 to 30% of infected individuals develop potentially lethal cardiac or gastrointestinal disease. Sylvatic transmission cycles exist in the southern United States, involving 11 triatomine vector species and infected mammals such as rodents, opossums, and dogs. Nevertheless, imported chronic T. cruzi infections in migrants from Latin America vastly outnumber locally acquired human cases. Benznidazole is now FDA approved, and clinical and public health efforts are under way by researchers and health departments in a number of states. Making progress will require efforts to improve awareness among providers and patients, data on diagnostic test performance and expanded availability of confirmatory testing, and evidence-based strategies to improve access to appropriate management of Chagas disease in the United States.
Collapse
Affiliation(s)
- Caryn Bern
- University of California San Francisco School of Medicine, San Francisco, California, USA
| | | | - Jeffrey D Whitman
- University of California San Francisco School of Medicine, San Francisco, California, USA
| | - James H Maguire
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|