1
|
Orłowska B, Majchrzak M, Didkowska A, Anusz K, Krajewska-Wędzina M, Zabost A, Brzezińska S, Kozińska M, Augustynowicz-Kopeć E, Urbańska K, Welz M, Parniewski P. Mycobacterial Interspersed Repeat Unit-Variable Number Tandem Repeat Typing of Mycobacterium avium Strains Isolated from the Lymph Nodes of Free-Living Carnivorous Animals in Poland. Pathogens 2023; 12:1184. [PMID: 37764992 PMCID: PMC10536629 DOI: 10.3390/pathogens12091184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Non-tuberculous mycobacteria (NTM) are ubiquitous organisms, of which some, especially those of the Mycobacterium avium complex (MAC), may be opportunistic animal and human pathogens. Infection with NTM can interfere with tuberculosis (TB) diagnosis and induce zoonoses, especially in immunocompromised individuals. Diseases caused by NTM have become more readily recognized; however, they are likely still underestimated. In this study, we identified and genotyped Mycobacterium avium strains that were isolated during TB monitoring among free-living carnivorous animals from southeastern Poland. In 2011-2020, lymph node samples from 192 such animals were tested for mycobacteria. A total of 41 isolates of M. avium strains were detected with the use of IS901, IS900, IS1245, and mycobacterial interspersed repeat unit-variable number tandem repeat (MIRU-VNTR) identification. Thirty-three were identified as M. avium subsp. avium. These strains were derived from 1 beech marten (Martes foina), 1 common buzzard (Buteo buteo), 2 European badgers (Meles meles), 3 wolves (Canis lupus), and 26 red foxes (Vulpes vulpes). One strain isolated from a wolf was identified as M. avium subsp. hominissuis. The results show the widespread occurrence of MAC bacilli in the studied environment and additionally comprise new data on the molecular characteristics of M. avium subspecies carried by free-living southeastern Polish carnivores.
Collapse
Affiliation(s)
- Blanka Orłowska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland; (A.D.); (K.A.)
| | - Marta Majchrzak
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Anna Didkowska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland; (A.D.); (K.A.)
| | - Krzysztof Anusz
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland; (A.D.); (K.A.)
| | - Monika Krajewska-Wędzina
- Department of Microbiology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100 Puławy, Poland;
| | - Anna Zabost
- Department of Microbiology, National Tuberculosis Reference Laboratory, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland; (A.Z.); (S.B.); (M.K.); (E.A.-K.)
| | - Sywia Brzezińska
- Department of Microbiology, National Tuberculosis Reference Laboratory, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland; (A.Z.); (S.B.); (M.K.); (E.A.-K.)
| | - Monika Kozińska
- Department of Microbiology, National Tuberculosis Reference Laboratory, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland; (A.Z.); (S.B.); (M.K.); (E.A.-K.)
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis Reference Laboratory, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland; (A.Z.); (S.B.); (M.K.); (E.A.-K.)
| | - Kaja Urbańska
- Department of Morphological Sciences, Division of Histology and Embryology, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Mirosław Welz
- Provincial Veterinary Inspectorate, Piotra Ścigiennego 6a, 38-400 Krosno, Poland;
| | - Paweł Parniewski
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| |
Collapse
|
2
|
Komatsu T, Ohya K, Ota A, Nishiuchi Y, Yano H, Matsuo K, Odoi JO, Suganuma S, Sawai K, Hasebe A, Asai T, Yanai T, Fukushi H, Wada T, Yoshida S, Ito T, Arikawa K, Kawai M, Ato M, Baughn AD, Iwamoto T, Maruyama F. Unique genomic sequences in a novel Mycobacterium avium subsp. hominissuis lineage enable fine scale transmission route tracing during pig movement. One Health 2023; 16:100559. [PMID: 37363238 PMCID: PMC10288077 DOI: 10.1016/j.onehlt.2023.100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 06/28/2023] Open
Abstract
Mycobacterium avium subsp. hominissuis (MAH) is one of the most prevalent mycobacteria causing non-tuberculous mycobacterial disease in humans and animals. Of note, MAH is a major cause of mycobacterial granulomatous mesenteric lymphadenitis outbreaks in pig populations. To determine the precise source of infection of MAH in a pig farm and to clarify the epidemiological relationship among pig, human and environmental MAH lineages, we collected 50 MAH isolates from pigs reared in Japan and determined draft genome sequences of 30 isolates. A variable number of tandem repeat analysis revealed that most pig MAH isolates in Japan were closely related to North American, European and Russian human isolates but not to those from East Asian human and their residential environments. Historical recombination analysis revealed that most pig isolates could be classified into SC2/4 and SC3, which contain MAH isolated from pig, European human and environmental isolates. Half of the isolates in SC2/4 had many recombination events with MAH lineages isolated from humans in East Asia. To our surprise, four isolates belonged to a new lineage (SC5) in the global MAH population. Members of SC5 had few footprints of inter-lineage recombination in the genome, and carried 80 unique genes, most of which were located on lineage specific-genomic islands. Using unique genetic features, we were able to trace the putative transmission route via their host pigs. Together, we clarify the possibility of species-specificity of MAH in addition to local adaptation. Our results highlight two transmission routes of MAH, one exposure on pig farms from the environment and the other via pig movement. Moreover, our study also warns that the evolution of MAH in pigs is influenced by MAH from patients and their residential environments, even if the MAH are genetically distinct.
Collapse
Affiliation(s)
- Tetsuya Komatsu
- Aichi Prefectural Tobu Livestock Hygiene Service Center, Toyohashi, Aichi, Japan
| | - Kenji Ohya
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu, Japan
| | - Atsushi Ota
- Data Science Center, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Yukiko Nishiuchi
- Office of Academic Research and Industry-Government Collaboration, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Hirokazu Yano
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kayoko Matsuo
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Kumamoto Prefectural Aso Public Health Center, Aso, Kumamoto, Japan
| | - Justice Opare Odoi
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Shota Suganuma
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kotaro Sawai
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki, Japan
| | - Akemi Hasebe
- Toyama Prefectural Meat Inspection Center, Imizu, Toyama, Japan
| | - Tetsuo Asai
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu, Japan
| | - Tokuma Yanai
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Hiwa Natural History Museum, Shobara, Hiroshima, Japan
| | - Hideto Fukushi
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Takayuki Wada
- Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka, Japan
| | - Shiomi Yoshida
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Osaka, Japan
| | - Toshihiro Ito
- Laboratory of Proteome Research, Proteome Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Kentaro Arikawa
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Hyogo, Japan
| | - Mikihiko Kawai
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Anthony D. Baughn
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Hyogo, Japan
| | - Fumito Maruyama
- Office of Academic Research and Industry-Government Collaboration, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Project Research Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|