1
|
Esmaeilbeigi M, P Duncan R, J Kefford B, Ezaz T, Clulow S. Evidence for a metal disease refuge: The amphibian-killing fungus (Batrachochytrium dendrobatidis) is inhibited by environmentally-relevant concentrations of metals tolerated by amphibians. ENVIRONMENTAL RESEARCH 2024; 261:119752. [PMID: 39117053 DOI: 10.1016/j.envres.2024.119752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The amphibian-killing fungus Batrachochytrium dendrobatidis (Bd) has caused substantial declines in Bd-susceptible amphibian species worldwide. However, some populations of Bd-susceptible frogs have managed to survive at existing metal-polluted sites, giving rise to the hypothesis that frogs might persist in the presence of Bd if Bd is inhibited by metals at concentrations that frogs can tolerate. We tested this hypothesis by measuring the survival of Bd zoospores, the life stage that infects amphibians, and calculated the LC50 after exposure to environmentally-relevant elevated concentrations of copper (Cu), zinc (Zn), and their combination (Cu + Zn) in two repeated 4-day acute exposure runs. We also measured the chronic sensitivity of Bd to these metals over three generations by measuring the number of colonies and live zoospores and calculating EC50 concentrations after 42 days of exposure. We then compared acute and chronic sensitivity of Bd with amphibian sensitivities by constructing species sensitivity distributions (SSDs) using LC50 and EC50 data obtained from the literature. Acute sensitivity data showed that Bd zoospore survival decreased with increasing metal concentrations and exposure durations relative to the control, with the highest LC50 values for Cu and Zn being 2.5 μg/L and 250 μg/L, respectively. Chronic exposures to metals resulted in decreased numbers of Bd colonies and live zoospores after 42 days, with EC50 values of 0.75 μg/L and 1.19 μg/L for Cu and Zn, respectively. Bd zoospore survival was 10 and 8 times more sensitive to Cu and Zn, respectively in acute, and 2 and 5 times more sensitive to Cu and Zn in chronic exposure experiments than the most sensitive amphibian species recorded. Our findings are consistent with the hypothesis that metals in existing metal-polluted sites may have a greater impact on Bd relative to amphibians' performance, potentially enabling Bd-susceptible amphibians to persist with Bd at these sites.
Collapse
Affiliation(s)
- Milad Esmaeilbeigi
- Centre for Applied Water Science, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, Bruce ACT, 2617, Australia.
| | - Richard P Duncan
- Center for Conservation Ecology and Genomics, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, Bruce ACT, 2617, Australia.
| | - Ben J Kefford
- Centre for Applied Water Science, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, Bruce ACT, 2617, Australia.
| | - Tariq Ezaz
- Center for Conservation Ecology and Genomics, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, Bruce ACT, 2617, Australia.
| | - Simon Clulow
- Center for Conservation Ecology and Genomics, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, Bruce ACT, 2617, Australia.
| |
Collapse
|
2
|
Holmes ML, Shine R, Waddle AW. Spontaneous reoccurrence of Batrachochytrium dendrobatidis infections in Australian green tree frogs (Litoria caerulea) following apparently successful heat therapy: Case report. Vet Res Commun 2024; 48:3229-3237. [PMID: 38951465 PMCID: PMC11442541 DOI: 10.1007/s11259-024-10449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/23/2024] [Indexed: 07/03/2024]
Abstract
Heat therapy has been reported as a safe, effective, and readily available treatment method for heat-tolerant frogs infected with Batrachochytrium dendrobatidis (Bd). We treated wild-caught Australian green tree frogs (Litoria caerulea) infected with Bd using two periods of elevated ambient room temperature (28.2-30.3 °C for 7 weeks followed by 28.9-34.1 °C for 4 weeks). Frogs exhibited persistent and even increasing infection loads in the first treatment period despite prolonged exposure to elevated temperatures, likely due to the presence of cooler microenvironments within their enclosure (25.5-27.0 °C). All frogs eventually returned negative qPCR tests for Bd at the end of the second treatment period, but detectable infections reoccurred one month after frogs were returned to standard housing temperatures (21.2-28.7 °C). Our findings suggest that elevated ambient temperature alone might not eliminate Bd in vivo but can reduce infections loads such that they are undetectable by qPCR analysis of skin swabs. Additional factors, such as cooler microenvironments within enclosures or relative humidity, may influence the success of heat therapy. We recommend further research into the combined effects of temperature and humidity during heat therapy and emphasize the importance of accurate temperature measurements as well as post-treatment monitoring at Bd-permissive temperatures to confirm successful clearance of infections.
Collapse
Affiliation(s)
- Madeleine L Holmes
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Richard Shine
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Anthony W Waddle
- Applied Biosciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
3
|
Noelker JE, Abreu Ruozzi V, Spengler KD, Craig HM, Raffel TR. Dynamic effects of thermal acclimation on chytridiomycosis infection intensity and transmission potential in Xenopus laevis. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240789. [PMID: 39263447 PMCID: PMC11387059 DOI: 10.1098/rsos.240789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024]
Abstract
The pandemic amphibian pathogen Batrachochytrium dendrobatidis (Bd) can cause more severe infections with variable temperatures owing to delays in host thermal acclimation following temperature shifts. However, little is known about the timing of these acclimation effects or their consequences for Bd transmission. We measured how thermal acclimation affects Bd infection in Xenopus laevis, using a timing-of-exposure treatment to investigate acclimation effect persistence following a temperature shift. Consistent with a delay in host acclimation, warm-acclimated frogs exposed to Bd immediately following a temperature decrease (day 0) developed higher infection intensities than frogs already acclimated to the cool temperature. This acclimation effect was surprisingly persistent (five weeks). Acclimation did not affect infection intensity when Bd exposure occurred one week after the temperature shift, indicating that frogs fully acclimated to new temperatures within 7 days. This suggests that acclimation effect persistence beyond one week post-exposure was caused by carry-over from initially high infection loads, rather than an extended delay in host acclimation. In a second experiment, we replicated the persistent thermal acclimation effects on Bd infection but found no acclimation effects on zoospore production. This suggests that variable temperatures consistently exacerbate individual Bd infection but may not necessarily increase Bd transmission.
Collapse
Affiliation(s)
- James E Noelker
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | | | - Kyle D Spengler
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Hunter M Craig
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Thomas R Raffel
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| |
Collapse
|
4
|
Carvalho T, Belasen AM, Toledo LF, James TY. Coevolution of a generalist pathogen with many hosts: the case of the amphibian chytrid Batrachochytrium dendrobatidis. Curr Opin Microbiol 2024; 78:102435. [PMID: 38387210 DOI: 10.1016/j.mib.2024.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/22/2023] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
Generalist pathogens maintain infectivity in numerous hosts; how this broad ecological niche impacts host-pathogen coevolution remains to be widely explored. Batrachochytrium dendrobatidis (Bd) is a highly generalist pathogenic fungus that has caused devastating declines in hundreds of amphibian species worldwide. This review examines amphibian chytridiomycosis host-pathogen interactions and available evidence for coevolution between Bd and its numerous hosts. We summarize recent evidence showing that Bd genotypes vary in geographic distribution and virulence, and that amphibian species also vary in Bd susceptibility according to their geographic distribution. How much variation can be explained by phenotypic plasticity or genetic differences remains uncertain. Recent research suggests that Bd genotypes display preferences for specific hosts and that some hosts are undergoing evolution as populations rebound from Bd outbreaks. Taken together, these findings suggest the potential for coevolution to occur and illuminate a path for addressing open questions through integrating historical and contemporary genetic data.
Collapse
Affiliation(s)
- Tamilie Carvalho
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Anat M Belasen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - L Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Unicamp, Campinas, São Paulo, Brazil
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
5
|
Roth SA, Griffis-Kyle KL, Barnes MA. Batrachochytrium dendrobatidis in the Arid and Thermally Extreme Sonoran Desert. ECOHEALTH 2023; 20:370-380. [PMID: 38243042 DOI: 10.1007/s10393-023-01668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 12/08/2023] [Indexed: 01/21/2024]
Abstract
Batrachochytrium dendrobatidis (Bd), the causative agent of the devastating global amphibian disease chytridiomycosis, was not projected to threaten amphibians in hot and arid regions due to its sensitivity to heat and desiccation. However, Bd is being detected more frequently than ever in hot and arid regions of Australia and the USA, challenging our current understanding of the environmental tolerances of the pathogen under natural conditions. We surveyed for Bd in an extremely hot and arid portion of the Sonoran Desert, where the pathogen is not projected to occur, and related presence and prevalence of the pathogen to local environmental conditions. We collected eDNA samples from isolated desert water sites including six tinajas and 13 catchments in June and August of 2020 and swabbed a total of 281 anurans of three species (red-spotted toad Anaxyrus punctatus, Couch's spadefoot Scaphiopus couchii, and the Sonoran Desert toad Incillius alvarius) across five catchments and six tinajas from June to September of 2020. Overall, Bd occurred at 68.4% of sites, despite extreme heat and aridity routinely exceeding tolerances established in laboratory studies. Average summer maximum air and water temperatures were 40.7°C and 30.7°C, respectively, and sites received an average of just 16.9 mm of precipitation throughout the summer monsoon season. Prevalence was low (5.7%) across species and life stage. Our results demonstrate that Bd is capable of persisting and infecting amphibians beyond its projected range, indicating a need to account for higher thermal tolerances when quantifying risk of Bd presence and infection.
Collapse
Affiliation(s)
- Sadie A Roth
- Department of Natural Resources Management, Texas Tech University, 2500 Broadway, Lubbock, TX, 79409, USA.
| | - Kerry L Griffis-Kyle
- Department of Natural Resources Management, Texas Tech University, 2500 Broadway, Lubbock, TX, 79409, USA
| | - Matthew A Barnes
- Department of Natural Resources Management, Texas Tech University, 2500 Broadway, Lubbock, TX, 79409, USA
| |
Collapse
|
6
|
Nolan N, Hayward MW, Klop-Toker K, Mahony M, Lemckert F, Callen A. Complex Organisms Must Deal with Complex Threats: How Does Amphibian Conservation Deal with Biphasic Life Cycles? Animals (Basel) 2023; 13:1634. [PMID: 37238064 PMCID: PMC10215276 DOI: 10.3390/ani13101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The unprecedented rate of global amphibian decline is attributed to The Anthropocene, with human actions triggering the Sixth Mass Extinction Event. Amphibians have suffered some of the most extreme declines, and their lack of response to conservation actions may reflect challenges faced by taxa that exhibit biphasic life histories. There is an urgent need to ensure that conservation measures are cost-effective and yield positive outcomes. Many conservation actions have failed to meet their intended goals of bolstering populations to ensure the persistence of species into the future. We suggest that past conservation efforts have not considered how different threats influence multiple life stages of amphibians, potentially leading to suboptimal outcomes for their conservation. Our review highlights the multitude of threats amphibians face at each life stage and the conservation actions used to mitigate these threats. We also draw attention to the paucity of studies that have employed multiple actions across more than one life stage. Conservation programs for biphasic amphibians, and the research that guides them, lack a multi-pronged approach to deal with multiple threats across the lifecycle. Conservation management programs must recognise the changing threat landscape for biphasic amphibians to reduce their notoriety as the most threatened vertebrate taxa globally.
Collapse
Affiliation(s)
- Nadine Nolan
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| | - Matthew W. Hayward
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| | - Kaya Klop-Toker
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| | - Michael Mahony
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| | - Frank Lemckert
- Eco Logical Australia Pty Ltd., Perth, WA 6000, Australia;
| | - Alex Callen
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| |
Collapse
|
7
|
Hulting KA, Mason SD, Story CM, Keller GS. Wetland cohesion is associated with increased probability of infection by the amphibian chytrid fungus Batrachochytrium dendrobatidis. DISEASES OF AQUATIC ORGANISMS 2022; 151:97-109. [PMID: 36226838 DOI: 10.3354/dao03692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) poses a substantial threat to amphibian populations. Understanding the landscape conditions that facilitate Bd transmission and persistence is crucial for predicting Bd trends in amphibian populations. Here, we investigated the interactions between land use, wetland connectivity, and Bd occurrence and infection intensity. In northeastern Massachusetts, we sampled Pseudacris crucifer, Lithobates sylvaticus, L. clamitans, and L. pipiens from 24 sites. We found an overall 30.6% Bd prevalence at our sites, with prevalence differing among species. Bd occurrence increased with wetland-patch cohesion, potentially due to microclimate shifts from decreased forest or changes in host movement. Bd infection intensity was not mediated by landscape context. Overall, our results highlight the importance of landscape structure for Bd dynamics, suggesting that certain landscapes may facilitate transmission and harbor Bd more than others. To mitigate the impacts of Bd on amphibian populations, conservation efforts should account for interactions between Bd and landscape variables.
Collapse
Affiliation(s)
- Katherine A Hulting
- Landscape Ecology Lab, Department of Life, Health, and Physical Sciences, Gordon College, Wenham, MA 01984, USA
| | | | | | | |
Collapse
|
8
|
Fu M, Waldman B. Novel chytrid pathogen variants and the global amphibian pet trade. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13938. [PMID: 35561039 DOI: 10.1111/cobi.13938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/25/2022] [Indexed: 06/15/2023]
Abstract
Global wildlife trade spreads emerging infectious diseases that threaten biodiversity. The amphibian chytrid pathogen Batrachochytrium dendrobatidis (Bd) has caused population declines and species extinctions worldwide except in Asia. Fire-bellied toads (Bombina orientalis), exported in large numbers from Asia, are tolerant of Bd and carry hypervirulent ancestral chytrid BdAsia-1 variants. We assayed the virulence of a new isolate of BdAsia-1 on the model Australasian frog host Litoria caerulea. Infected individuals (n = 15) all showed rapid disease progression culminating in death, whereas sham-inoculated individuals (n = 10) presented no clinical signs of disease and all survived (log rank test, χ2 = 15.6, df = 1, p < 0.0001). The virulence of the new isolate of BdAsia-1 is comparable to the one we assayed previously (χ2 = 0.0, df = 1, p = 0.91). Internationally traded wildlife, even when they appear healthy, can carry hypervirulent variants of pathogens. Once new pathogen variants escape into the environment, native species that have had no opportunity to evolve resistance to them may perish. Our study suggests that hypervirulent pathogens are being spread by the international pet trade. Notifiable wildlife diseases attributable to locally endemic pathogens often fail to generate conservation concern so are rarely subject to border surveillance or import controls. Because of the danger novel variants pose, national border control agencies need to implement disease screening and quarantine protocols to ensure the safety of their endemic fauna.
Collapse
Affiliation(s)
- Minjie Fu
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Bruce Waldman
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
9
|
Schmeller DS, Cheng T, Shelton J, Lin CF, Chan-Alvarado A, Bernardo-Cravo A, Zoccarato L, Ding TS, Lin YP, Swei A, Fisher MC, Vredenburg VT, Loyau A. Environment is associated with chytrid infection and skin microbiome richness on an amphibian rich island (Taiwan). Sci Rep 2022; 12:16456. [PMID: 36180528 PMCID: PMC9525630 DOI: 10.1038/s41598-022-20547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
Growing evidence suggests that the origins of the panzootic amphibian pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) are in Asia. In Taiwan, an island hotspot of high amphibian diversity, no amphibian mass mortality events linked to Bd or Bsal have been reported. We conducted a multi-year study across this subtropical island, sampling 2517 individuals from 30 species at 34 field sites, between 2010 and 2017, and including 171 museum samples collected between 1981 and 2009. We analyzed the skin microbiome of 153 samples (6 species) from 2017 in order to assess any association between the amphibian skin microbiome and the probability of infection amongst different host species. We did not detect Bsal in our samples, but found widespread infection by Bd across central and northern Taiwan, both taxonomically and spatially. Museum samples show that Bd has been present in Taiwan since at least 1990. Host species, geography (elevation), climatic conditions and microbial richness were all associated with the prevalence of infection. Host life-history traits, skin microbiome composition and phylogeny were associated with lower prevalence of infection for high altitude species. Overall, we observed low prevalence and burden of infection in host populations, suggesting that Bd is enzootic in Taiwan where it causes subclinical infections. While amphibian species in Taiwan are currently threatened by habitat loss, our study indicates that Bd is in an endemic equilibrium with the populations and species we investigated. However, ongoing surveillance of the infection is warranted, as changing environmental conditions may disturb the currently stable equilibrium.
Collapse
Affiliation(s)
- Dirk S Schmeller
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, INPT, UPS, Toulouse, France
| | - Tina Cheng
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
- Bat Conservation International, Washington, DC, USA
| | - Jennifer Shelton
- Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK
| | - Chun-Fu Lin
- Zoology Division, Endemic Species Research Institute, Jiji, Nantou, Taiwan, ROC
| | - Alan Chan-Alvarado
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
| | - Adriana Bernardo-Cravo
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, INPT, UPS, Toulouse, France
| | - Luca Zoccarato
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, 16775, Stechlin, Germany
| | - Tzung-Su Ding
- School of Forestry and Resource Conservation, National Taiwan University, Taipei City, 106, Taiwan, ROC
| | - Yu-Pin Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Andrea Swei
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
| | - Matthew C Fisher
- Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Adeline Loyau
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, INPT, UPS, Toulouse, France.
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, 16775, Stechlin, Germany.
| |
Collapse
|
10
|
Granroth‐Wilding HMV, Candolin U. No strong associations between temperature and the host-parasite interaction in wild stickleback. JOURNAL OF FISH BIOLOGY 2022; 101:453-463. [PMID: 35598110 PMCID: PMC9545309 DOI: 10.1111/jfb.15107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
As climate change progresses, thermal stress is expected to alter the way that host organisms respond to infections by pathogens and parasites, with consequences for the fitness and therefore population processes of both host and parasite. The authors used a correlational natural experiment to examine how temperature differences shape the impact of the cestode parasite Schistocephalus solidus on its host, the three-spined stickleback (Gasterosteus aculeatus). Previous laboratory work has found that high temperatures benefit S. solidus while being detrimental to the stickleback. The present study sought to emulate this design in the wild, repeatedly sampling naturally infected and uninfected fish at matched warmer and cooler locations in the Baltic Sea. In this wild study, the authors found little evidence that temperature was associated with the host-parasite interaction. Although infection reduced host condition and reproductive status overall, these effects did not vary with temperature. Host fitness indicators correlated to some extent with temperature, with cooler capture sites associated with larger size but warmer sites with improved reproductive potential. Parasite fitness (prevalence or size) was not correlated with temperature at the capture site. These mismatches between laboratory and field outcomes illustrate how findings from well-controlled laboratory experiments may not fully reflect processes in more variable natural settings. Nonetheless, the findings of this study indicate that temperature can influence host fitness regardless of infection, with potential consequences for both host demography and parasite transmission dynamics in this complex system.
Collapse
Affiliation(s)
- Hanna M. V. Granroth‐Wilding
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Ulrika Candolin
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
11
|
Turner A, Heard G, Hall A, Wassens S. Age structure of amphibian populations with endemic chytridiomycosis, across climatic regions with markedly different infection risk. Ecol Evol 2022; 12:e9123. [PMID: 35898428 PMCID: PMC9309026 DOI: 10.1002/ece3.9123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/05/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
Threatening processes, such as disease, can drive major changes in population demographics of the host. Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), has led to the decline of at least 500 amphibian species across the globe and has been shown to truncate host age structure by lowering adult survival rates. This results in heavy reliance on annual recruitment and the inability to recover in the event of periodic recruitment failure. We used skeletochronology to determine the age structure, growth, and survival rates of populations of an endangered amphibian, Litoria raniformis, with endemic chytridiomycosis, across two climatically disparate regions in south-eastern Australia: semi-arid and temperate. Contrary to predictions, populations in the semi-arid region (in which chytrid prevalence is substantially lower due to high temperatures) displayed a more truncated age structure than populations in the temperate study regions. Maximum recorded age was only two years in the semi-arid region compared with up to four years in the temperate region. Wetland hydroperiod and average seasonal air temperature were correlated with age, and males had a slightly higher survival rate than females (0.31 for males and 0.27 for females). Despite the previously documented differences in chytrid prevalence between the two climatic regions, water availability and wetland hydroperiods appear the over-riding determinants of the age structure and survival rates of L. raniformis. Targeted management which ensures water availability and improves survival of 1-year-old frogs into their second and third breeding season would reduce the impact of stochastic events on L. raniformis, and this may be true for numerous frog species susceptible to chytridiomycosis.
Collapse
Affiliation(s)
- Anna Turner
- School of Agricultural, Environmental and Veterinary ScienceCharles Sturt UniversityAlburyNew South WalesAustralia
| | - Geoffrey Heard
- Terrestrial Ecosystem Research NetworkThe University of QueenslandIndooroopilyQueenslandAustralia
| | - Andrew Hall
- School of Agricultural, Environmental and Veterinary ScienceCharles Sturt UniversityAlburyNew South WalesAustralia
| | - Skye Wassens
- School of Agricultural, Environmental and Veterinary ScienceCharles Sturt UniversityAlburyNew South WalesAustralia
| |
Collapse
|
12
|
Belasen AM, Russell ID, Zamudio KR, Bletz MC. Endemic Lineages of Batrachochytrium dendrobatidis Are Associated With Reduced Chytridiomycosis-Induced Mortality in Amphibians: Evidence From a Meta-Analysis of Experimental Infection Studies. Front Vet Sci 2022; 9:756686. [PMID: 35310410 PMCID: PMC8931402 DOI: 10.3389/fvets.2022.756686] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/08/2022] [Indexed: 01/13/2023] Open
Abstract
Emerging infectious wildlife diseases have caused devastating declines, particularly when pathogens have been introduced in naïve host populations. The outcome of disease emergence in any host population will be dictated by a series of factors including pathogen virulence, host susceptibility, and prior opportunity for coevolution between hosts and pathogens. Historical coevolution can lead to increased resistance in hosts and/or reduced virulence in endemic pathogens that allows stable persistence of host and pathogen populations. Adaptive coevolution may also occur on relatively short time scales following introduction of a novel pathogen. Here, we performed a meta-analysis of multi-strain Batrachochytrium dendrobatidis (Bd) infection experiments to test whether: (1) amphibian hosts exhibit lower mortality rates when infected with strains belonging to endemic Bd lineages relative to the Global Panzootic Lineage (Bd-GPL), hypothetically owing to long co-evolutionary histories between endemic Bd lineages and their amphibian hosts; and (2) amphibians exhibit lower mortality rates when infected with local Bd-GPL strains compared with non-local Bd-GPL strains, hypothetically owing to recent selection for tolerance or resistance to local Bd-GPL strains. We found that in a majority of cases, amphibians in endemic Bd treatments experienced reduced mortality relative to those in Bd-GPL treatments. Hosts presumed to have historically coexisted with endemic Bd did not show reduced mortality to Bd-GPL compared with hosts that have not historically coexisted with endemic Bd. Finally, we detected no overall difference in amphibian mortality between local and non-local Bd-GPL treatments. Taken together, our results suggest that long-term historical coexistence is associated with less disease-induced mortality potentially due to hypovirulence in endemic Bd lineages, and that more recent coexistence between amphibians and Bd-GPL has not yet resulted in reduced host susceptibility or pathogen virulence. This corroborates previous findings that Bd-GPL introduced via the global amphibian trade has a high capacity for causing disease-induced mortality.
Collapse
Affiliation(s)
- Anat M. Belasen
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
- Society for Conservation Biology, Washington, DC, United States
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Imani D. Russell
- Department of Ecology, Evolution, and Marine Biology, University of California-Santa Barbara, Santa Barbara, CA, United States
| | - Kelly R. Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Molly C. Bletz
- Department of Biology, University of Massachusetts-Boston, Boston, MA, United States
| |
Collapse
|