1
|
Kim EY, Park H, Kim EJ, Lee SH, Choi JW, Kim J, Jung HS, Sohn Y. Efficacy of Trigonella foenum-graecum Linné in an animal model of particulate matter-induced asthma exacerbation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117228. [PMID: 37757990 DOI: 10.1016/j.jep.2023.117228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The seeds of Trigonella foenum-graecum Linné (TFG) has traditionally been used in Central Asia to relieve inflammation. AIM OF THE STUDY This study investigated the efficacy of TFG in a bronchial cell model and an animal model of asthma exacerbation caused by PM. METHODS BEAS-2B bronchial epithelial cells were simultaneously treated with tumor necrosis factor-α/interleukin (IL)-4 and PM, and the expression of inflammatory cytokines, DNA damage, and autophagy mechanisms were analyzed. In an animal model of asthma exacerbation, we analyzed changes in organ weight, distribution of inflammatory cytokines and inflammatory cells in the bronchoalveolar lavage fluid, and intra-tissue mucus production. RESULTS In the cell model, TFG suppressed the expression of the inflammatory cytokines IL-6, granulocyte-macrophage colony stimulating factor, monocyte chemoattractant protein-1, and IL-8; reactive oxygen species levels and DNA damage; and the phosphorylation of ERK, JNK, P38, AKT, and mTOR. In the animal model, TFG significantly reduced weight gain of the liver, lung, and spleen; IgE, IL-6, and IFN-γ levels; and bronchial mucus secretion and smooth muscle thickness. CONCLUSION TFG alleviated the PM-exacerbated inflammatory response by inhibiting the MAPK and autophagy signaling pathways; it is expected to be an effective treatment for asthma.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Hoyeon Park
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Eom Ji Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Seung Hoon Lee
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Jun Won Choi
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Jonghyun Kim
- Department of Medical classics and history, College of Korean Medicine, Gachon University, 1342, Seongnamdaero, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do, 13120, Republic of Korea.
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
2
|
Lee JH, Jaiswal MS, Jang YS, Choi JH, Kim GC, Hong JW, Hwang DS. No-ozone cold plasma induces apoptosis in human neuroblastoma cell line via increased intracellular reactive oxygen species (ROS). BMC Complement Med Ther 2024; 24:46. [PMID: 38245726 PMCID: PMC10799363 DOI: 10.1186/s12906-023-04313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND This study aimed to evaluate the effect of argon-based No-ozone Cold Plasma (NCP) on neuroblastoma cancer cell apoptosis. METHODS Experiments were performed with SK-N-SH and HS 68. Cell cultures were treated with NCP for 1, 3, and 5 min. NCP was applied using three different strategies: direct NCP application to cell cultures, to only media, and to only cells. Evaluation of cell viability and the level of the reactive oxygen species (ROS) was performed. N-acetyl-L-cysteine (NAC) was also used to antagonize intracellular ROS. Cleaved caspase 3, PARP, aquaporin (AQP) 3 and 8 were detected. RESULTS NCP induced a gradual decrease in the SK-N-SH cell viability. In contrast, the viability of HS 68 cells did not change. SK-N-SH cells viability was reduced the most when the only media-NCP application strategy was employed. Intracellular ROS levels were significantly increased with time. Cleaved caspase 3 and PARP were increased at 6 h after NCP application. SK-N-SH cells remained viable with NAC after NCP application. AQP 3 and 8 were over-expressed in SK-N-SH cells. CONCLUSION These findings demonstrate the anti-cancer effect of NCP on neuroblastoma cells. NCP enhanced the selective apoptosis of neuroblastoma cells due to the increased intracellular ROS.
Collapse
Affiliation(s)
- Jung-Han Lee
- Department of Oral and Maxillofacial Surgery, Dental and Life Science Institute, Dental School, Pusan National University, Busan, South Korea
| | - M Shriya Jaiswal
- Department of Oral and Maxillofacial Surgery, Dental and Life Science Institute, Dental School, Pusan National University, Busan, South Korea
| | - Yoon-Seo Jang
- Department of Oral and Maxillofacial Surgery, Dental and Life Science Institute, Dental School, Pusan National University, Busan, South Korea
| | - Jeong-Hae Choi
- Department of Research and Development, FEAGLE Corporations, 70-6, Jeungsan-ro, Mulgeum-eup, Yangsan-si, 50614, Gyeongsangnam-do, South Korea
| | - Gyoo-Cheon Kim
- Department of Research and Development, FEAGLE Corporations, 70-6, Jeungsan-ro, Mulgeum-eup, Yangsan-si, 50614, Gyeongsangnam-do, South Korea
- Department of Oral Anatomy and Cell Biology, School of Dentistry, Pusan National University, Busan, South Korea
| | - Jin-Woo Hong
- Department of Internal Medicine, School of Korean Medicine, Yangsan Campus of Pusan National University, Beomeo-ri, Mulgeum-eup, Yangsan-si, 50612, Gyeongsangnam-do, South Korea.
| | - Dae-Seok Hwang
- Department of Oral and Maxillofacial Surgery, Dental and Life Science Institute, Dental School, Pusan National University, Busan, South Korea.
- Dental Research Institute, Pusan National University Dental Hospital, Yangsan, South Korea.
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Beomeo-ri, Mulgeum-eup, Yangsan-si, 50612, Gyeongsangnam-do, South Korea.
| |
Collapse
|
3
|
Chwil M, Matraszek-Gawron R, Kostryco M, Różańska-Boczula M. Nutritionally Important Pro-Health Active Ingredients and Antioxidant Properties of Fruits and Fruit Juice of Selected Biennial Fruiting Rubus idaeus L. Cultivars. Pharmaceuticals (Basel) 2023; 16:1698. [PMID: 38139824 PMCID: PMC10747748 DOI: 10.3390/ph16121698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Raspberry fruits are an important source of many biologically active chemical compounds exerting nutritional and pro-health effects. The study presents a comparative analysis of nutritionally important bioactive chemical compounds-polyphenols; flavonoids, including anthocyanins; vitamin C; amino acids; fatty acids; and primary metabolites-contained in the fruits of three biennial fruiting cultivars, R. idaeus 'Glen Ample', 'Laszka', and 'Radziejowa', i.e., common cultivars in Poland and Europe. The antioxidant activity of fresh fruits and juice was determined with five methods. The analyses revealed the strong free radical scavenging potential of the fruits and juice, confirmed by the high concentration of nutrients, e.g., polyphenols, anthocyanins, vitamin C, amino acids, and fatty acids. The antioxidant activity of the juice determined with the ferric reducing antioxidant power (FRAP) and OH radical methods was from 2.5 to 4.0 times higher than that of the fruits. The following orders of total polyphenol contents were established in the analyzed cultivars: 'Glen Ample' < 'Laszka' < 'Radziejowa' in the fruits and 'Glen Ample' < 'Radziejowa' < 'Laszka' in the juice. The highest antioxidant activity was exhibited by the 'Radziejowa' fruits. Given their high content of dietary fiber, the fruits of the analyzed raspberry cultivars can be consumed by dieting subjects. The concentrations of vitamin C (28-34 mg/100 g) and anthocyanins (20-34 mg/100 g) indicate the biological and pharmacological activity of these fruits. The main unsaturated fatty acids in the fruits were gamma-linoleic acid (C18:2n6c) and alpha-linolenic acid (C18:3n3), which neutralize excess free radicals. The amino acids nutritionally essential to humans were dominated by leucine, arginine, and phenylalanine. This is the first comparative analysis of the antioxidant activity of fruits and juice and the contents of selected active compounds in the fruits of biennial fruiting cultivars of R. idaeus, i.e., a highly commercialized crop in Europe.
Collapse
Affiliation(s)
- Mirosława Chwil
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland;
| | - Renata Matraszek-Gawron
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland;
| | - Mikołaj Kostryco
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland;
| | - Monika Różańska-Boczula
- Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| |
Collapse
|
4
|
Antioxidant and Physical Properties of Dual-Networked Contact Lenses Containing Quercetin Using Chitosan and Alginate. Macromol Res 2022. [DOI: 10.1007/s13233-022-0098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Park JY, Park SH, Oh SW, Kwon K, Yu E, Choi S, Yang S, Han SB, Jung K, Song M, Cho JY, Lee J. Yellow Chaste Weed and Its Components, Apigenin and Galangin, Affect Proliferation and Oxidative Stress in Blue Light-Irradiated HaCaT Cells. Nutrients 2022; 14:nu14061217. [PMID: 35334874 PMCID: PMC8953766 DOI: 10.3390/nu14061217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
While harmful effects of blue light on skin cells have been recently reported, there are few studies regarding natural products that alleviate its negative effects. Therefore, we investigated ameliorating effects of yellow chaste weed (YCW) (Helichrysum arenarium) extract and its components, apigenin and galangin, on blue light-irradiated HaCaT cells. In this study, we found that YCW extract improved the reduced proliferation of HaCaT cells induced by blue light-irradiation and reduced blue light-induced production of reactive oxygen species (ROS) levels. We also found that apigenin and galangin, the main components of YCW extract, showed the same activities as YCW extract. In experiments examining molecular mechanisms of YCW extract and its components such as apigenin and galangin, they all reduced expression of transient receptor potential vanilloid member 1 (TRPV1), its phosphorylation, and calcium ion (Ca2+) influx induced by blue light irradiation. In addition, apigenin and galangin regulated phosphorylation of mitogen-activated protein kinases (MAPKs). They also reduced phosphorylation of mammalian sterile 20-like kinase-1/2 (MST-1/2), inducing phosphorylation of Akt (protein kinase B), one downstream molecule of MST-1/2. Moreover, apigenin and galangin promoted translocation of Forkhead box O3 (FoxO3a) from the nucleus to the cytosol by phosphorylating FoxO3a. Besides, apigenin and galangin interrupted blue light influences on expression of nuclear and secretory clusterin. Namely, they attenuated both upregulation of nuclear clusterin and downregulation of secretory clusterin induced by blue light irradiation. We also found that they downregulated apoptotic protein Bcl-2 associated X protein (Bax) and conversely upregulated anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). Collectively, these findings indicate that YCW extract and its components, apigenin and galangin, antagonize the blue light-induced damage to the keratinocytes by regulating TRPV1/clusterin/FoxO3a and MAPK signaling.
Collapse
Affiliation(s)
- Jung Yoen Park
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong City 30016, Korea;
| | - Sae Woong Oh
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
| | - Kitae Kwon
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
| | - Eunbi Yu
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
| | - Seoyoung Choi
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
| | - Seoyoun Yang
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
| | - Su Bin Han
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
| | - Kwangsun Jung
- Biocosmetics Laboratory, TOUN28 Inc., Seongnam 13449, Korea;
| | - Minkyung Song
- Integrative Research of T Cells Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea
- Correspondence: (M.S.); (J.Y.C.); (J.L.); Tel.: +82-31-290-7861 (J.L.)
| | - Jae Youl Cho
- Molecular Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea
- Correspondence: (M.S.); (J.Y.C.); (J.L.); Tel.: +82-31-290-7861 (J.L.)
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
- Correspondence: (M.S.); (J.Y.C.); (J.L.); Tel.: +82-31-290-7861 (J.L.)
| |
Collapse
|
6
|
Cytoprotective Effect of Epigallocatechin Gallate (EGCG)-5'-O-α-Glucopyranoside, a Novel EGCG Derivative. Int J Mol Sci 2018; 19:ijms19051466. [PMID: 29762498 PMCID: PMC5983637 DOI: 10.3390/ijms19051466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022] Open
Abstract
Epigallocatechin gallate (EGCG) is a well-studied polyphenol with antioxidant effects. Since EGCG has low solubility and stability, many researchers have modified EGCG residues to ameliorate these problems. A novel EGCG derivative, EGCG-5′-O-α-glucopyranoside (EGCG-5′Glu), was synthesized, and its characteristics were investigated. EGCG-5′Glu showed antioxidant effects in cell and cell-free systems. Under SNP-derived radical exposure, EGCG-5′Glu decreased nitric oxide (NO) production, and recovered ROS-mediated cell viability. Moreover, EGCG-5′Glu regulated apoptotic pathways (caspases) and cell survival molecules (phosphoinositide 3-kinase (PI3K) and phosphoinositide-dependent kinase 1 (PDK1)). In another radical-induced condition, ultraviolet B (UVB) irradiation, EGCG-5′Glu protected cells from UVB and regulated the PI3K/PDK1/AKT pathway. Next, the proliferative effect of EGCG-5′Glu was examined. EGCG-5′Glu increased cell proliferation by modulating nuclear factor (NF)-κB activity. EGCG-5′Glu protects and repairs cells from external damage via its antioxidant effects. These results suggest that EGCG-5′Glu could be used as a cosmetics ingredient or dietary supplement.
Collapse
|
7
|
Lee SH, Park HS, Yang Y, Lee EY, Kim JW, Khang G, Yoon KH. Improvement of islet function and survival by integration of perfluorodecalin into microcapsules in vivo and in vitro. J Tissue Eng Regen Med 2018; 12:e2110-e2122. [PMID: 29330944 DOI: 10.1002/term.2643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/04/2017] [Accepted: 01/02/2018] [Indexed: 12/24/2022]
Abstract
Hypoxic injury of islets is a major obstacle for encapsulated islet transplantation into the peritoneal cavity. To improve oxygen delivery to encapsulated islets, we integrated 20% of the oxygen carrier material, perfluorodecalin (PFD), in alginate capsules mixed with islets (PFD-alginate). Integration of PFD clearly improved islet viability and decreased reactive oxygen species production compared to islets encapsulated with alginate only (alginate) and naked islets exposed to hypoxia in vitro. In PFD-alginate capsules, HIF-1α expression was minimal, and insulin expression was well maintained. Furthermore, the best islet function represented by glucose-stimulated insulin secretion was observed for the PFD-alginate capsules in hypoxic condition. For the in vivo study, the same number of naked islets and encapsulated islets (alginate and PFD-alginate) was transplanted into streptozotocin-induced diabetic mice. Nonfasting blood glucose levels and the area under the curve for glucose based on intraperitoneal glucose tolerance tests in the PFD-alginate group were lower than in the alginate group. The harvested islets stained positive for insulin in all groups, but the ratio of dead cell area was 4 times higher in the alginate group than in the PFD-alginate group. In conclusion, integration of PFD in alginate microcapsules improved islet function and survival by minimizing the hypoxic damage of islets after intraperitoneal transplantation.
Collapse
Affiliation(s)
- Sang-Ho Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Heon-Seok Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yeoree Yang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Eun-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji-Won Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Gilson Khang
- Department of Polymer Nano Science and Technology, Department of BIN Fusion Technology and BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Jeonju, South Korea
| | - Kun-Ho Yoon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|