1
|
Fesahat F, Firouzabadi AM, Zare-Zardini H, Imani M. Roles of Different β-Defensins in the Human Reproductive System: A Review Study. Am J Mens Health 2023; 17:15579883231182673. [PMID: 37381627 PMCID: PMC10334010 DOI: 10.1177/15579883231182673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/21/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Human β-defensins (hBDs) are cationic peptides with an amphipathic spatial shape and a high cysteine content. The members of this peptide family have been found in the human body with various functions, including the human reproductive system. Of among β-defensins in the human body, β-defensin 1, β-defensin 2, and β-defensin 126 are known in the human reproductive system. Human β-defensin 1 interacts with chemokine receptor 6 (CCR6) in the male reproductive system to prevent bacterial infections. This peptide has a positive function in antitumor immunity by recruiting dendritic cells and memory T cells in prostate cancer. It is necessary for fertilization via facilitating capacitation and acrosome reaction in the female reproductive system. Human β-defensin 2 is another peptide with antibacterial action which can minimize infection in different parts of the female reproductive system such as the vagina by interacting with CCR6. Human β-defensin 2 could play a role in preventing cervical cancer via interactions with dendritic cells. Human β-defensin 126 is required for sperm motility and protecting the sperm against immune system factors. This study attempted to review the updated knowledge about the roles of β-defensin 1, β-defensin 2, and β-defensin 126 in both the male and female reproductive systems.
Collapse
Affiliation(s)
- Farzaneh Fesahat
- Reproductive Immunology Research
Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amir Masoud Firouzabadi
- Reproductive Immunology Research
Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hadi Zare-Zardini
- Hematology and Oncology Research
Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Imani
- Reproductive Immunology Research
Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Zhai YJ, Feng Y, Ma X, Ma F. Defensins: defenders of human reproductive health. Hum Reprod Update 2022; 29:126-154. [PMID: 36130055 PMCID: PMC9825273 DOI: 10.1093/humupd/dmac032] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/31/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Reproductive tract infection is an important factor leading to male and female infertility. Among female infertility factors, microbial and viral infections are the main factors affecting female reproductive health and causing tubal infertility, ectopic tubal pregnancy and premature delivery. Among male infertility factors, 13-15% of male infertility is related to infection. Defensins are cationic antibacterial and antiviral peptides, classified into α-defensins, β-defensins and θ-defensins. Humans only have α-defensins and β-defensins. Apart from their direct antimicrobial functions, defensins have an immunomodulatory function and are involved in many physiological processes. Studies have shown that defensins are widely distributed in the female reproductive tract (FRT) and male reproductive tract (MRT), playing a dual role of host defence and fertility protection. However, to our knowledge, the distribution, regulation and function of defensins in the reproductive tract and their relation to reproduction have not been reviewed. OBJECTIVE AND RATIONALE This review summarizes the expression, distribution and regulation of defensins in the reproductive tracts to reveal the updated research on the dual role of defensins in host defence and the protection of fertility. SEARCH METHODS A systematic search was conducted in PubMed using the related keywords through April 2022. Related data from original researches and reviews were integrated to comprehensively review the current findings and understanding of defensins in the human reproductive system. Meanwhile, female and male transcriptome data in the GEO database were screened to analyze defensins in the human reproductive tracts. OUTCOMES Two transcriptome databases from the GEO database (GSE7307 and GSE150852) combined with existing researches reveal the expression levels and role of the defensins in the reproductive tracts. In the FRT, a high expression level of α-defensin is found, and the expression levels of defensins in the vulva and vagina are higher than those in other organs. The expression of defensins in the endometrium varies with menstrual cycle stages and with microbial invasion. Defensins also participate in the local immune response to regulate the risk of spontaneous preterm birth. In the MRT, a high expression level of β-defensins is also found. It is mainly highly expressed in the epididymal caput and corpus, indicating that defensins play an important role in sperm maturation. The expression of defensins in the MRT varies with androgen levels, age and the status of microbial invasion. They protect the male reproductive system from bacterial infections by neutralizing lipopolysaccharide and downregulating pro-inflammatory cytokines. In addition, animal and clinical studies have shown that defensins play an important role in sperm maturation, motility and fertilization. WIDER IMPLICATIONS As a broad-spectrum antimicrobial peptide without drug resistance, defensin has great potential for developing new natural antimicrobial treatments for reproductive tract infections. However, increasing evidence has shown that defensins can not only inhibit microbial invasion but can also promote the invasion and adhesion of some microorganisms in certain biological environments, such as human immunodeficiency virus. Therefore, the safety of defensins as reproductive tract anti-infective drugs needs more in-depth research. In addition, the modulatory role of defensins in fertility requires more in-depth research since the current conclusions are based on small-size samples. At present, scientists have made many attempts at the clinical transformation of defensins. However, defensins have problems such as poor stability, low bioavailability and difficulties in their synthesis. Therefore, the production of safe, effective and low-cost drugs remains a challenge.
Collapse
Affiliation(s)
| | | | - Xue Ma
- Correspondence address. Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7781-821X (F.M.); Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7650-6214 (X.M.)
| | - Fang Ma
- Correspondence address. Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7781-821X (F.M.); Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7650-6214 (X.M.)
| |
Collapse
|
3
|
Bharucha JP, Sun L, Lu W, Gartner S, Garzino-Demo A. Human Beta-Defensin 2 and 3 Inhibit HIV-1 Replication in Macrophages. Front Cell Infect Microbiol 2021; 11:535352. [PMID: 34277460 PMCID: PMC8281893 DOI: 10.3389/fcimb.2021.535352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/17/2021] [Indexed: 12/26/2022] Open
Abstract
Human beta-defensins (hBDs) are broad-spectrum antimicrobial peptides, secreted by epithelial cells of the skin and mucosae, and astrocytes, which we and others have shown to inhibit HIV-1 in primary CD4+ T cells. Although loss of CD4+ T cells contributes to mucosal immune dysfunction, macrophages are a major source of persistence and spread of HIV and also contribute to the development of various HIV-associated complications. We hypothesized that, besides T cells, hBDs could protect macrophages from HIV. Our data in primary human monocyte-derived macrophages (MDM) in vitro show that hBD2 and hBD3 inhibit HIV replication in a dose-dependent manner. We determined that hBD2 neither alters surface expression of HIV receptors nor induces expression of anti-HIV cytokines or beta-chemokines in MDM. Studies using a G-protein signaling antagonist in a single-cycle reporter virus system showed that hBD2 suppresses HIV at an early post-entry stage via G-protein coupled receptor (GPCR)-mediated signaling. We find that MDM express the shared chemokine-hBD receptors CCR2 and CCR6, albeit at variable levels among donors. However, cell surface expression analyses show that neither of these receptors is necessary for hBD2-mediated HIV inhibition, suggesting that hBD2 can signal via additional receptor(s). Our data also illustrate that hBD2 treatment was associated with increased expression of APOBEC3A and 3G antiretroviral restriction factors in MDM. These findings suggest that hBD2 inhibits HIV in MDM via more than one CCR thus adding to the potential of using β-defensins in preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Jennifer P Bharucha
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Lingling Sun
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Wuyuan Lu
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Suzanne Gartner
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alfredo Garzino-Demo
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Nelson CS, Fouda GG, Permar SR. Pediatric HIV-1 Acquisition and Lifelong Consequences of Infant Infection. CURRENT IMMUNOLOGY REVIEWS 2019; 15:131-138. [PMID: 33223981 PMCID: PMC7678020 DOI: 10.2174/1573395514666180531074047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/11/2018] [Accepted: 05/24/2018] [Indexed: 11/22/2022]
Abstract
Increased availability of antiretroviral therapy to pregnant and breastfeeding women in resource-limited areas has proven remarkably successful at reducing HIV vertical transmission rates over the past several decades. Yet, still more than 170,000 children are infected annually due to failures in therapy implementation, monitoring, and adherence. Mother-to-child transmission (MTCT) of HIV-1 can occur at one of several distinct stages of infant development - intrauterine, intrapartum, and postpartum. The heterogeneity of the maternal-fetal interface at each of these modes of transmission poses a challenge for the implementation of immune interventions to prevent all modes of HIV MTCT. However, using mother-infant human cohorts and nonhuman primate models of infant simian immunodeficiency virus (SIV) acquisition, investigators have made important observation about the biology of pediatric HIV infection and have identified unique protective immune factors for each mode of transmission. Knowledge of immune factors protective against HIV MTCT will be critical to the development of targeted immune therapies to prevent infant HIV acquisition and to bring an end to the pediatric AIDS epidemic.
Collapse
Affiliation(s)
- Cody S. Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Genevieve G.A. Fouda
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R. Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
5
|
Zupin L, Polesello V, Segat L, Kamada AJ, Kuhn L, Crovella S. DEFB1 polymorphisms and HIV-1 mother-to-child transmission in Zambian population. J Matern Fetal Neonatal Med 2018; 32:2805-2811. [PMID: 29506422 DOI: 10.1080/14767058.2018.1449206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Introduction: Human Beta Defensin-1 (hBD-1) is a component of the innate immune system, the first line of defence against pathogens, already reported as involved in the susceptibility to HIV-1 infection and HIV-1 mother-to-child transmission (MTCT) in different populations. We investigated the role of DEFB1 gene (encoding for hBD-1) functional polymorphisms in the susceptibility to HIV-1 MTCT in a population from Zambia. Methods: Four selected polymorphisms within DEFB1 gene, three at the 5' untranslated region (UTR), namely -52G > A (rs1799946), -44C > G (rs1800972) and -20G > A (rs11362) and one in the 3'UTR, c.*87A > G (rs1800972), were genotyped in 101 HIV-1 positive mothers (26 transmitters -27% and 75 not transmitters -73%) and 331 infants born to HIV-1 infected mothers (85 HIV-1 positive -26% and 246 exposed but not infected -74%). Results: DEFB1 c.*87-A allele was more frequent among HIV- children with respect to HIV+ (with intrauterine MTCT). Concerning DEFB1 haplotypes, GCGA haplotype resulted more represented in HIV- than HIV+ infants and DEFB1 ACGG haplotype presented increased frequency in HIV- children respect to HIV+ (with intra-partum MTCT) (p = .02, p = .002 and p = .006, respectively). Conclusions: DEFB1 polymorphisms were significantly associated with decreased risk of HIV-1 infection acquisition in the studied Zambian population suggesting that they may play a role in HIV-1 MTCT.
Collapse
Affiliation(s)
- Luisa Zupin
- a Department of Medicine, Surgery and Health Sciences , University of Trieste , Trieste , Italy
| | - Vania Polesello
- b Institute for Maternal and Child Health - IRCCS "Burlo Garofolo" , Trieste , Italy
| | - Ludovica Segat
- b Institute for Maternal and Child Health - IRCCS "Burlo Garofolo" , Trieste , Italy
| | - Anselmo Jiro Kamada
- c Department of Genetics , Federal University of Pernambuco , Recife , Brazil
| | - Louise Kuhn
- d Gertrude H. Sergievsky Center and Department of Epidemiology, Mailman School of Public Health , Columbia University , NY , USA
| | - Sergio Crovella
- b Institute for Maternal and Child Health - IRCCS "Burlo Garofolo" , Trieste , Italy
| |
Collapse
|
6
|
Santos ÍM, da Rosa EA, Gräf T, Ferreira LGE, Petry A, Cavalheiro F, Reiche EM, Zanetti CR, Pinto AR. Analysis of Immunological, Viral, Genetic, and Environmental Factors That Might Be Associated with Decreased Susceptibility to HIV Infection in Serodiscordant Couples in Florianópolis, Southern Brazil. AIDS Res Hum Retroviruses 2015; 31:1116-25. [PMID: 26389741 PMCID: PMC4651055 DOI: 10.1089/aid.2015.0168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Individuals who have been exposed to human immunodeficiency virus (HIV) and have not been infected might possess natural resistance mechanisms. An understanding of the sociodemographic and immunological conditions that influence resistance to HIV is a challenge, and very little is known about the role of intrinsic antiviral factors that restrict HIV infection. The aim of this study was to analyze potential factors responsible for resistance to HIV infection in serodiscordant couples by comparing HIV-exposed seronegative individuals (HESN) to HIV-seropositive individuals treated with antiretroviral therapy (HIV-ART) along with healthy controls (HC). The results revealed one HLA-B*27 and two HLA-B*57 individuals among the HESN; a CCR5Δ32 heterozygous deletion was observed in one serodiscordant couple, while the homozygous genotype for this variant was not observed. There were no differences in the basal mRNA expression of APOBEC3G, CFLAR, TRIM5α, LEDGF/p75, BST-2, or SAMHD1 in CD4(+) T lymphocyte- and monocyte-enriched populations among the three groups, and lower HBD-3 concentrations were observed in saliva from HIV-ART compared to HESN and HC. The most prevalent HIV-1 subtype was C or C-containing recombinant forms. Six HIV-ART individuals and one HIV-ART individual were infected with the R5 HIV and X4 HIV strains, respectively. The ability to control infection or delay disease progression is probably defined by a balance between viral and host factors, and further evaluation should be performed in larger cohorts. Our data suggest that susceptibility to HIV infection varies among individuals and strengthens the multifactorial characteristics underlying the resistance mechanisms in HIV.
Collapse
Affiliation(s)
- Íris M. Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Elis A. da Rosa
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Tiago Gräf
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Andrea Petry
- Centro de Hematologia e Hemoterapia de Santa Catarina, Florianópolis, SC, Brazil
| | - Fernanda Cavalheiro
- Centro de Hematologia e Hemoterapia de Santa Catarina, Florianópolis, SC, Brazil
| | - Edna M. Reiche
- Departamento de Patologia, Análises Clínicas e Toxicológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Carlos R. Zanetti
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Aguinaldo R. Pinto
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
7
|
Abstract
Most infants born to human immunodeficiency virus (HIV)-infected women escape HIV infection. Infants evade infection despite an immature immune system and, in the case of breastfeeding, prolonged repetitive exposure. If infants become infected, the course of their infection and response to treatment differs dramatically depending upon the timing (in utero, intrapartum, or during breastfeeding) and potentially the route of their infection. Perinatally acquired HIV infection occurs during a critical window of immune development. HIV's perturbation of this dynamic process may account for the striking age-dependent differences in HIV disease progression. HIV infection also profoundly disrupts the maternal immune system upon which infants rely for protection and immune instruction. Therefore, it is not surprising that infants who escape HIV infection still suffer adverse effects. In this review, we highlight the unique aspects of pediatric HIV transmission and pathogenesis with a focus on mechanisms by which HIV infection during immune ontogeny may allow discovery of key elements for protection and control from HIV.
Collapse
|
8
|
Hanna CW, McFadden DE, Robinson WP. DNA methylation profiling of placental villi from karyotypically normal miscarriage and recurrent miscarriage. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2276-84. [PMID: 23583422 DOI: 10.1016/j.ajpath.2013.02.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/31/2013] [Accepted: 02/12/2013] [Indexed: 12/20/2022]
Abstract
Miscarriage occurs in 15% of clinical pregnancies. Although chromosomal errors are observed in >50%, causes of karyotypically normal losses are poorly understood. DNA methylation undergoes reprogramming during development and must be appropriately set to maintain a healthy pregnancy. We hypothesize that aberrant DNA methylation may cause karyotypically normal miscarriage, particularly among women experiencing recurrent miscarriage (RM). DNA methylation in first-trimester chorionic villi was assessed in chromosomally normal miscarriages from women with RM (N = 33) or isolated miscarriage (M; N = 21) and elective terminations (TA; N = 16). Differentially methylated candidate loci were identified using the Illumina Infinium HumanMethylation27 BeadChip array. Follow-up bisulfite pyrosequencing at promoter regions showed an increase in methylation in M compared with TA at cytochrome P450, subfamily 1A, polypeptide 2 (CYP1A2; P = 0.002) and RM compared with TA at AXL receptor tyrosine kinase (P = 0.02), and a decrease in RM and M compared with TA at defensin β 1 (DEFB1; P = 0.008). Gene ontology analysis showed an enrichment of imprinted genes (P = 9.53 × 10(-10)) and genes previously associated with RM (P = 9.51 × 10(-6)). An increase of outliers at seven imprinted loci was observed in RM (3.9%) compared with M (0%) and TA (0.9%) (P = 0.02), with increased average methylation at H19/IGF2 ICR1 in M samples (P < 0.0001). Altered DNA methylation in the placenta at specific loci, and global dysregulation in specific cases, may contribute to or be a consequence of poor placental function in karyotypically normal miscarriage.
Collapse
Affiliation(s)
- Courtney W Hanna
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
9
|
da Silva RC, Bedin E, Mangano A, Aulicino P, Pontillo A, Brandão L, Guimarães R, Arraes LC, Sen L, Crovella S. HIV mother-to-child transmission: a complex genetic puzzle tackled by Brazil and Argentina research teams. INFECTION GENETICS AND EVOLUTION 2013; 19:312-22. [PMID: 23524206 DOI: 10.1016/j.meegid.2013.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 11/24/2022]
Abstract
Human immunodeficiency virus (HIV) mother-to-child transmission is a complex event, depending upon environmental factors and is affected by host genetic factors from mother and child, as well as viral genetic elements. The integration of multiple parameters (CD4 cell count, virus load, HIV subtype, and host genetic markers) could account for the susceptibility to HIV infection, a multifactorial trait. The goal of this manuscript is to analyze the immunogenetic factors associated to HIV mother-to-child transmission, trying to unravel the genetic puzzle of HIV mother-to-child transmission and considering the experience in this topic of two research groups from Brazil and Argentina.
Collapse
Affiliation(s)
- R Celerino da Silva
- Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n°, CEP 50.670-420, Cidade Universitária, Recife, Pernambuco, Brazil; Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n°, CEP 50.670-420, Cidade Universitária, Recife, Pernambuco, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|