1
|
A new host-targeted antiviral cyclolignan (SAU-22.107) for Dengue Virus infection in cell cultures. Potential action mechanisms based on cell imaging. Virus Res 2023; 323:198995. [PMID: 36336130 DOI: 10.1016/j.virusres.2022.198995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Dengue virus (DENV) infection is the most arbovirosis in the world. However, medications have not been approved for its treatment. Drug discovery based on the host-targeted antiviral (HTA) constitutes a new promising strategy, considering their high genetic barrier to resistance and the low probability of selecting drug resistance strains. In this study, we have tested fifty-seven podophyllotoxin-related cyclolignans on DENV-2 infected cells and found the most promising compound was S.71. Using cellular and molecular biology experiments, we have discovered that the new lignan altered the distribution of microtubules, induced changes in cell morphology, and caused retraction of the rough endoplasmic reticulum. In addition, the compound alters the viral envelope protein and the double-stranded RNA, while there is a decrease in negative-strand RNA synthesis; especially when the compound was added between 6- and 12-hours post-infection. Altogether, S.71 decreases the viral yield through an HTA-related mechanism of action, possibly altering the DENV genome replication and/or polyprotein translation, through the alteration of microtubule distribution and endoplasmic reticulum deterioration. Finally, pharmacokinetic predictors show that S.71 falls within the standard ranges established for drugs.
Collapse
|
2
|
Calderón-Peláez MA, Velandia-Romero ML, Bastidas-Legarda LY, Beltrán EO, Camacho-Ortega SJ, Castellanos JE. Dengue Virus Infection of Blood-Brain Barrier Cells: Consequences of Severe Disease. Front Microbiol 2019; 10:1435. [PMID: 31293558 PMCID: PMC6606788 DOI: 10.3389/fmicb.2019.01435] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
More than 500 million people worldwide are infected each year by any of the four-dengue virus (DENV) serotypes. The clinical spectrum caused during these infections is wide and some patients may develop neurological alterations during or after the infection, which could be explained by the cryptic neurotropic and neurovirulent features of flaviviruses like DENV. Using in vivo and in vitro models, researchers have demonstrated that DENV can affect the cells from the blood-brain barrier (BBB) in several ways, which could result in brain tissue damage, neuronal loss, glial activation, tissue inflammation and hemorrhages. The latter suggests that BBB may be compromised during infection; however, it is not clear whether the damage is due to the infection per se or to the local and/or systemic inflammatory response established or activated by the BBB cells. Similarly, the kinetics and cascade of events that trigger tissue damage, and the cells that initiate it, are unknown. This review presents evidence of the BBB cell infection with DENV and the response established toward it by these cells; it also describes the consequences of this response on the nervous tissue, compares these evidence with the one reported with neurotropic viruses of the Flaviviridae family, and shows the complexity and unpredictability of dengue and the neurological alterations induced by it. Clinical evidence and in vitro and in vivo models suggest that this virus uses the bloodstream to enter nerve tissue where it infects the different cells of the neurovascular unit. Each of the cell populations respond individually and collectively and control infection and inflammation, in other cases this response exacerbates the damage leaving irreversible sequelae or causing death. This information will allow us to understand more about the complex disease known as dengue, and its impact on a specialized and delicate tissue like is the nervous tissue.
Collapse
|
3
|
Characterization of the Filovirus-Resistant Cell Line SH-SY5Y Reveals Redundant Role of Cell Surface Entry Factors. Viruses 2019; 11:v11030275. [PMID: 30893855 PMCID: PMC6466046 DOI: 10.3390/v11030275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
Filoviruses infect a wide range of cell types with the exception of lymphocytes. The intracellular proteins cathepsin B and L, two-pore channel 1 and 2, and bona fide receptor Niemann–Pick Disease C1 (NPC1) are essential for the endosomal phase of cell entry. However, earlier steps of filoviral infection remain poorly characterized. Numerous plasma membrane proteins have been implicated in attachment but it is still unclear which ones are sufficient for productive entry. To define a minimal set of host factors required for filoviral glycoprotein-driven cell entry, we screened twelve cell lines and identified the nonlymphocytic cell line SH-SY5Y to be specifically resistant to filovirus infection. Heterokaryons of SH-SY5Y cells fused to susceptible cells were susceptible to filoviruses, indicating that SH-SY5Y cells do not express a restriction factor but lack an enabling factor critical for filovirus entry. However, all tested cell lines expressed functional intracellular factors. Global gene expression profiling of known cell surface entry factors and protein expression levels of analyzed attachment factors did not reveal any correlation between susceptibility and expression of a specific host factor. Using binding assays with recombinant filovirus glycoprotein, we identified cell attachment as the step impaired in filovirus entry in SH-SY5Y cells. Individual overexpression of attachment factors T-cell immunoglobulin and mucin domain 1 (TIM-1), Axl, Mer, or dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) rendered SH-SY5Y cells susceptible to filovirus glycoprotein-driven transduction. Our study reveals that a lack of attachment factors limits filovirus entry and provides direct experimental support for a model of filoviral cell attachment where host factor usage at the cell surface is highly promiscuous.
Collapse
|
4
|
Chen T, He X, Zhang P, Yuan Y, Lang X, Yu J, Qin Z, Li X, Zhang Q, Zhu L, Zhang B, Wu Q, Zhao W. Research advancements in the neurological presentation of flaviviruses. Rev Med Virol 2019; 29:e2021. [PMID: 30548722 PMCID: PMC6590462 DOI: 10.1002/rmv.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/27/2018] [Accepted: 10/26/2018] [Indexed: 12/25/2022]
Abstract
Owing to the large-scale epidemic of Zika virus disease and its association with microcephaly, properties that allow flaviviruses to cause nervous system diseases are an important area of investigation. At present, although potential pathogenic mechanisms of flaviviruses in the nervous system have been examined, they have not been completely elucidated. In this paper, we review the possible mechanisms of blood-brain barrier penetration, the pathological effects on neurons, and the association between virus mutations and neurotoxicity. A hypothesis on neurotoxicity caused by the Zika virus is presented. Clarifying the mechanisms of virulence of flaviviruses will be helpful in finding better antiviral drugs and optimizing the treatment of symptoms.
Collapse
Affiliation(s)
- Tingting Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Xiaoen He
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Peiru Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Yawen Yuan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Xinyue Lang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Jianhai Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Zhiran Qin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Xujuan Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Li Zhu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Bao Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Qinghua Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
5
|
Contemporary Circulating Enterovirus D68 Strains Have Acquired the Capacity for Viral Entry and Replication in Human Neuronal Cells. mBio 2018; 9:mBio.01954-18. [PMID: 30327438 PMCID: PMC6191546 DOI: 10.1128/mbio.01954-18] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Since the EV-D68 outbreak during the summer of 2014, evidence of a causal link to a type of limb paralysis (AFM) has been mounting. In this article, we describe a neuronal cell culture model (SH-SY5Y cells) in which a subset of contemporary 2014 outbreak strains of EV-D68 show infectivity in neuronal cells, or neurotropism. We confirmed the difference in neurotropism in vitro using primary human neuron cell cultures and in vivo with a mouse paralysis model. Using the SH-SY5Y cell model, we determined that a barrier to viral entry is at least partly responsible for neurotropism. SH-SY5Y cells may be useful in determining if specific EV-D68 genetic determinants are associated with neuropathogenesis, and replication in this cell line could be used as rapid screening tool for identification of neurotropic EV-D68 strains. This may assist with better understanding of pathogenesis and epidemiology and with the development of potential therapies. Enterovirus D68 (EV-D68) has historically been associated with respiratory illnesses. However, in the summers of 2014 and 2016, EV-D68 outbreaks coincided with a spike in polio-like acute flaccid myelitis/paralysis (AFM/AFP) cases. This raised concerns that EV-D68 could be the causative agent of AFM during these recent outbreaks. To assess the potential neurotropism of EV-D68, we utilized the neuroblastoma-derived neuronal cell line SH-SY5Y as a cell culture model to determine if differential infection is observed for different EV-D68 strains. In contrast to HeLa and A549 cells, which support viral infection of all EV-D68 strains tested, SH-SY5Y cells only supported infection by a subset of contemporary EV-D68 strains, including isolates from the 2014 outbreak. Viral replication and infectivity in SH-SY5Y were assessed using multiple assays: virus production, cytopathic effects, cellular ATP release, and VP1 capsid protein production. Similar differential neurotropism was also observed in differentiated SH-SY5Y cells, primary human neuron cultures, and a mouse paralysis model. Using the SH-SY5Y cell culture model, we determined that barriers to viral binding and entry were at least partly responsible for the differential infectivity phenotype. Transfection of genomic RNA into SH-SY5Y generated virions for all EV-D68 isolates, but only a single round of replication was observed from strains that could not directly infect SH-SY5Y. In addition to supporting virus replication and other functional studies, this cell culture model may help identify the signatures of virulence to confirm epidemiological associations between EV-D68 strains and AFM and allow for the rapid identification and characterization of emerging neurotropic strains.
Collapse
|
6
|
Salomão NG, Rabelo K, Póvoa TF, Alves AMB, da Costa SM, Gonçalves AJS, Amorim JF, Azevedo AS, Nunes PCG, Basílio-de-Oliveira CA, Basílio-de-Oliveira RP, Geraldo LHM, Fonseca CG, Lima FRS, Mohana-Borges R, Silva EM, Dos Santos FB, Oliveira ERA, Paes MV. BALB/c mice infected with DENV-2 strain 66985 by the intravenous route display injury in the central nervous system. Sci Rep 2018; 8:9754. [PMID: 29950590 PMCID: PMC6021404 DOI: 10.1038/s41598-018-28137-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/12/2018] [Indexed: 01/08/2023] Open
Abstract
Dengue is a mild flu-like arboviral illness caused by dengue virus (DENV) that occurs in tropical and subtropical countries. An increasing number of reports have been indicating that dengue is also associated to neurological manifestations, however, little is known regarding the neuropathogenesis of the disease. Here, using BALB/c mice intravenously infected with DENV-2 strain 66985, we demonstrated that the virus is capable of invading and damaging the host’s central nervous system (CNS). Brain and cerebellum of infected animals revealed histological alterations such as the presence of inflammatory infiltrates, thickening of pia matter and disorganization of white matter. Additionally, it was also seen that infection lead to altered morphology of neuroglial cells and apoptotic cell death. Such observations highlighted possible alterations that DENV may promote in the host’s CNS during a natural infection, hence, helping us to better understand the neuropathological component of the disease.
Collapse
Affiliation(s)
- Natália G Salomão
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Kíssila Rabelo
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ada M B Alves
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Simone M da Costa
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Antônio J S Gonçalves
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Juliana F Amorim
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos, Fundacão Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Adriana S Azevedo
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos, Fundacão Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Priscilla C G Nunes
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carlos A Basílio-de-Oliveira
- Anatomia Patológica, Hospital Gaffrée Guinle, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo P Basílio-de-Oliveira
- Anatomia Patológica, Hospital Gaffrée Guinle, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz H M Geraldo
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celina G Fonseca
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia R S Lima
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emiliana M Silva
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia B Dos Santos
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Edson R A Oliveira
- Laboratório de Modelagem Molecular, Instituto de Química Orgânica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marciano V Paes
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Ho MR, Tsai TT, Chen CL, Jhan MK, Tsai CC, Lee YC, Chen CH, Lin CF. Blockade of dengue virus infection and viral cytotoxicity in neuronal cells in vitro and in vivo by targeting endocytic pathways. Sci Rep 2017; 7:6910. [PMID: 28761128 PMCID: PMC5537343 DOI: 10.1038/s41598-017-07023-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023] Open
Abstract
Dengue virus (DENV) infection in neuronal cells was speculated to trigger neuropathy. Herein, we determined the blockade of DENV infection by targeting endocytic pathways in vitro and in vivo. In DENV-infected mouse brains, we previously showed that viral proteins are expressed in neuronal cells around the hippocampus with accompanying neurotoxicity. DENV caused infection, including entry, double-stranded (ds)RNA replication, protein expression, and virus release, followed by cytotoxicity in the mouse neuronal Neuro-2a cell line. Pharmacologically blocking clathrin-mediated endocytosis of the DENV retarded viral replication. Targeting vacuolar-type H+-ATPase (V-ATPase)-based endosomal acidification effectively blocked the DENV replication process, but had no direct effect on viral translation. Blockade of the clathrin- and V-ATPase-based endocytic pathways also attenuated DENV-induced neurotoxicity. Inhibiting endosomal acidification effectively retarded DENV infection, acute viral encephalitis, and mortality. These results demonstrate that clathrin mediated endocytosis of DENV followed by endosomal acidification-dependent viral replication in neuronal cells, which can lead to neurotoxicity.
Collapse
Affiliation(s)
- Min-Ru Ho
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Tsung-Ting Tsai
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Chia-Ling Chen
- Translational Research Center, Taipei Medical University, Taipei, 110, Taiwan
| | - Ming-Kai Jhan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Cheng-Chieh Tsai
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan
| | - Yi-Chao Lee
- The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Chun-Han Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|