1
|
de Freitas RCC, Bortolin RH, Borges JB, de Oliveira VF, Dagli-Hernandez C, Marçal EDSR, Bastos GM, Gonçalves RM, Faludi AA, Silbiger VN, Luchessi AD, Hirata RDC, Hirata MH. LDLR and PCSK9 3´UTR variants and their putative effects on microRNA molecular interactions in familial hypercholesterolemia: a computational approach. Mol Biol Rep 2023; 50:9165-9177. [PMID: 37776414 DOI: 10.1007/s11033-023-08784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/25/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is caused by pathogenic variants in low-density lipoprotein (LDL) receptor (LDLR) or its associated genes, including apolipoprotein B (APOB), proprotein convertase subtilisin/kexin type 9 (PCSK9), and LDLR adaptor protein 1 (LDLRAP1). However, approximately 40% of the FH patients clinically diagnosed (based on FH phenotypes) may not carry a causal variant in a FH-related gene. Variants located at 3' untranslated region (UTR) of FH-related genes could elucidate mechanisms involved in FH pathogenesis. This study used a computational approach to assess the effects of 3'UTR variants in FH-related genes on miRNAs molecular interactions and to explore the association of these variants with molecular diagnosis of FH. METHODS AND RESULTS Exons and regulatory regions of FH-related genes were sequenced in 83 FH patients using an exon-target gene sequencing strategy. In silico prediction tools were used to study the effects of 3´UTR variants on interactions between miRNAs and target mRNAs. Pathogenic variants in FH-related genes (molecular diagnosis) were detected in 44.6% FH patients. Among 59 3'UTR variants identified, LDLR rs5742911 and PCSK9 rs17111557 were associated with molecular diagnosis of FH, whereas LDLR rs7258146 and rs7254521 and LDLRAP1 rs397860393 had an opposite effect (p < 0.05). 3´UTR variants in LDLR (rs5742911, rs7258146, rs7254521) and PCSK9 (rs17111557) disrupt interactions with several miRNAs, and more stable bindings were found with LDLR (miR-4435, miR-509-3 and miR-502) and PCSK9 (miR-4796). CONCLUSION LDLR and PCSK9 3´UTR variants disturb miRNA:mRNA interactions that could affect gene expression and are potentially associated with molecular diagnosis of FH.
Collapse
Affiliation(s)
- Renata Caroline Costa de Freitas
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jessica Bassani Borges
- Department of Research, Hospital Beneficiencia Portuguesa de Sao Paulo, Sao Paulo, 01323-001, Brazil
| | - Victor Fernandes de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
| | - Carolina Dagli-Hernandez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
| | - Elisangela da Silva Rodrigues Marçal
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
- Laboratory of Molecular Research in Cardiology, Institute of Cardiology Dante Pazzanese, Sao Paulo, 04012-909, Brazil
| | - Gisele Medeiros Bastos
- Department of Research, Hospital Beneficiencia Portuguesa de Sao Paulo, Sao Paulo, 01323-001, Brazil
| | | | - Andre Arpad Faludi
- Medical Division, Institute of Cardiology Dante Pazzanese, Sao Paulo, 04012-909, Brazil
| | - Vivian Nogueira Silbiger
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, 59012-570, Brazil
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal, 59078-900, Brazil
| | - André Ducati Luchessi
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, 59012-570, Brazil
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal, 59078-900, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil.
| |
Collapse
|
2
|
Sui GG, Xiao HB, Lu XY, Sun ZL. Naringin Activates AMPK Resulting in Altered Expression of SREBPs, PCSK9, and LDLR To Reduce Body Weight in Obese C57BL/6J Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8983-8990. [PMID: 30092639 DOI: 10.1021/acs.jafc.8b02696] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Previous investigations have shown molecular cross-talk among activated adenosine monophosphate-activated protein kinase (AMPK), proprotein convertase subtilisin/kexin type 9 (PCSK9), sterol regulatory element-binding proteins (SREBPs), and low-density lipoprotein receptor (LDLR) and that it may be an innovative pharmacologic objective for treating obesity. We scrutinized the beneficial effect of naringin, a flavanone-7- O-glycoside, on obesity and the mechanisms in the present study. We arbitrarily divided 50 mice into five groups ( n = 10): 25 or 50 or 100 mg/kg/day naringin-treated obese mice (gavage for 8 weeks), untreated obese mice, and C57BL/6J control. After 8 weeks, body weight was 51.8 ± 4.4 in the untreated obese mice group, while the weights were 41.4 ± 4.1, 34.6 ± 2.2, and 28.0 ± 2.3 in 25, 50,100 mg/kg naringin groups, respectively. Moreover, naringin treatment significantly decreased plasma 8-isoprostane (an indicator of the oxidative stress) level, fat weight, liver weight, hepatic total cholesterol concentration, hepatic triglyceride concentration, plasma leptin level, plasma insulin content, plasma low-density lipoprotein cholesterol level, and plasma PCSK9 production concomitantly with down-regulated expression of SREBP-2, PCSK9, and SREBP-1, and up-regulated expression of p-AMPKα and LDLR. The present results suggest that naringin activates AMPK resulting in altered expression of SREBPs, PCSK9, and LDLR to reduce the body weight of obese C57BL/6J mice.
Collapse
Affiliation(s)
- Guo-Guang Sui
- College of Veterinary Medicine , Hunan Agricultural University , Changsha 410128 , China
| | - Hong-Bo Xiao
- College of Veterinary Medicine , Hunan Agricultural University , Changsha 410128 , China
| | - Xiang-Yang Lu
- Hunan Province University Key Laboratory for Agricultural Biochemistry and Biotransformation , Hunan Agricultural University , Changsha 410128 , China
- Hunan Co-Innovation Center for Ultilization of Botanical Functional Ingredients , Changsha 410128 , China
| | - Zhi-Liang Sun
- Hunan Engineering Research Center of Veterinary Drug , Changsha 410128 , China
| |
Collapse
|