1
|
Gómez-Vargas W, Ríos-Tapias PA, Marin-Velásquez K, Giraldo-Gallo E, Segura-Cardona A, Arboleda M. Density of Aedes aegypti and dengue virus transmission risk in two municipalities of Northwestern Antioquia, Colombia. PLoS One 2024; 19:e0295317. [PMID: 38271346 PMCID: PMC10810462 DOI: 10.1371/journal.pone.0295317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/19/2023] [Indexed: 01/27/2024] Open
Abstract
The high infestation of Aedes aegypti populations in Urabá, Antioquia, Colombia represents a risk factor for increased dengue morbidity and mortality. This study aimed to determine the risk of dengue transmission by estimating the population of Ae. aegypti using entomological indices, density of females per dwelling and inhabitant, and virological surveillance in two municipalities in Colombia. A cross-sectional study was conducted with quarterly entomological surveys in three neighborhoods of Apartadó and Turbo between 2021 and 2022. Aedes indices and vector density per dwelling and per inhabitant were calculated. The Kernel method was used for spatial analysis, and correlations between climatic variables and mosquito density were examined. Virus detection and serotyping in mosquitoes was performed using single-step reverse transcription polymerase chain reaction. The housing, reservoir, and Breteau indices were 48.9%, 29.5%, and 70.2%, respectively. The mean density of Ae. aegypti was 1.47 females / dwelling and 0.51 females / inhabitant. The overall visual analysis showed several critical points in the neighborhoods studied. There was significant correlation of vector density and relative humidity and precipitation in the neighborhoods 29 de noviembre and 24 de diciembre. Additionally, serotypes DENV-1 and DENV-2 were found. The overall indices for dwellings, reservoirs, and Breteau were lower than those recorded in 2014 in Urabá. The vector density results in this study were similar to those reported in other studies conducted in Latin America, and vector infection was detected. The Aedes and density indices are complementary, emphasizing the importance of continuous surveillance of Ae. aegypti to inform appropriate control strategies and prevent future dengue outbreaks in these municipalities.
Collapse
Affiliation(s)
- Wilber Gómez-Vargas
- Epidemiology and Biostatistics Group, Graduate School, Universidad CES, Medellín, Colombia
| | - Paola Astrid Ríos-Tapias
- Tropical Medicine Group, Colombian Institute of Tropical Medicine - Universidad CES, Apartadó, Colombia
| | - Katerine Marin-Velásquez
- Tropical Medicine Group, Colombian Institute of Tropical Medicine - Universidad CES, Sabaneta, Colombia
| | - Erika Giraldo-Gallo
- Epidemiology and Biostatistics Group, Graduate School, Universidad CES, Medellín, Colombia
| | - Angela Segura-Cardona
- Epidemiology and Biostatistics Group, Graduate School, Universidad CES, Medellín, Colombia
| | - Margarita Arboleda
- Tropical Medicine Group, Colombian Institute of Tropical Medicine - Universidad CES, Apartadó, Colombia
| |
Collapse
|
2
|
Golding MAJ, Noble SAA, Khouri NK, Layne-Yarde RNA, Ali I, Sandiford SL. Natural vertical transmission of dengue virus in Latin America and the Caribbean: highlighting its detection limitations and potential significance. Parasit Vectors 2023; 16:442. [PMID: 38017450 PMCID: PMC10685567 DOI: 10.1186/s13071-023-06043-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023] Open
Abstract
Dengue continues to be a major public health concern in Latin America and the Caribbean with many countries in the region having experienced drastic increases in the incidence of dengue over the past few years. Dengue virus is predominantly transmitted by the bite of an infected female Aedes aegypti mosquito via a process called horizontal transmission. However, the virus may also be transmitted from an infected female mosquito to her offspring by vertical transmission, which occurs via viral invasion of the ovary either at the time of fertilization or during oviposition. In this way, mosquitoes may become dengue virus infected before ever encountering a human host. While some researchers have reported this phenomenon and suggested it may serve as a reservoir for the dengue virus in nature, others have questioned its epidemiological significance because of the low frequency at which it has been observed. Several researchers have either altogether failed to detect it or observed its occurrence at low frequencies. However, some studies have attributed these failures to small sample sizes as well as poor sensitivities of screening methods employed. Therefore, an overview of the occurrence, significance and limitations of detection of vertical transmission of dengue virus in Aedes mosquitoes in nature within Latin America and the Caribbean will be the focus of this review.
Collapse
Affiliation(s)
- Mario A J Golding
- Department of Basic Medical Sciences, Pharmacology and Pharmacy Section, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston, Jamaica
| | - Simmoy A A Noble
- Department of Microbiology, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston, Jamaica
| | - Nadia K Khouri
- Department of Basic Medical Sciences, Pharmacology and Pharmacy Section, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston, Jamaica
| | - Rhaheem N A Layne-Yarde
- Department of Basic Medical Sciences, Pharmacology and Pharmacy Section, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston, Jamaica
| | - Inshan Ali
- College of Health and Wellness, Department of Health Sciences, Barry University, Miami Shores, FL, 33161, USA
- Microbiology Laboratory, Memorial Healthcare System, Hollywood, FL, 33021, USA
| | - Simone L Sandiford
- Department of Basic Medical Sciences, Pharmacology and Pharmacy Section, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston, Jamaica.
- Mosquito Control and Research Unit, The University of the West Indies, Mona, Kingston, Jamaica.
| |
Collapse
|
3
|
Rojo-Ospina RA, Quimbayo-Forero M, Calle-Tobón A, Bedoya-Patiño SC, Gómez M, Ramírez A, Sánchez J, Silva-Alzate JF, Montes-Zuluaga CJ, Cadavid JM, Henao-Correa EA. Integrated vector management program in the framework of the COVID-19 pandemic in Medellin, Colombia. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:131-144. [PMID: 37167464 PMCID: PMC10495193 DOI: 10.7705/biomedica.6679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/08/2023] [Indexed: 05/13/2023]
Abstract
Introduction: The COVID-19 pandemic pressured health care systems to remain alert and active in their vector-borne disease control and prevention programs, leading to changes in vector control strategies in urban areas affected by dengue, Zika and chikungunya. Objective: To describe the adaptations made to the vector control and surveillance program in Medellín during the COVID-19 health emergency. Materials and methods: Once the health emergency started, biosecurity protocols were developed. Entomological surveillance was strengthened from the institutional environment instead of homes. Data was collected in Medellín from 2018 to 2021 during the vector control and surveillance program activities, which included epidemiological and entomovirological surveillance, entomological index survey, ovitrap monitoring, community mobilization, search and elimination of mosquito breading sites, and chemical control. These actions were adapted and/or increased to promote self-care among communities in total and partial confinement, and to develop prevention and control measures. Results: Mosquito monitoring was increased by 40% using ovitraps, entomological virological surveillance showed an increase in 2020 of 34,4% compared to 2019 and virtual media was used to keep and improve contact with the community. Conclusion: The COVID-19 pandemic had a significant impact on arbovirus prevention and control programs. The city of Medellín quickly adapted its entomo-virological surveillance activities, control measures, and the contact with the community during the pandemic, which allow the Integrated Vector Management program to remain active in the city.
Collapse
Affiliation(s)
- Raúl A Rojo-Ospina
- Programa de Control de Vectores, Secretaría de Salud, Alcaldía de Medellín, Medellín, Colombia.
| | - Marcela Quimbayo-Forero
- Programa de Control de Vectores, Secretaría de Salud, Alcaldía de Medellín, Medellín, Colombia; Grupo Entomología Médica, Universidad de Antioquia, Medellín, Colombia.
| | - Arley Calle-Tobón
- Programa de Control de Vectores, Secretaría de Salud, Alcaldía de Medellín, Medellín, Colombia; Grupo Entomología Médica, Universidad de Antioquia, Medellín, Colombia.
| | - Sindy C Bedoya-Patiño
- Programa de Control de Vectores, Secretaría de Salud, Alcaldía de Medellín, Medellín, Colombia.Programa de Control de Vectores, Secretaría de Salud, Alcaldía de Medellín, Medellín, Colombia.
| | - Maribel Gómez
- Programa de Control de Vectores, Secretaría de Salud, Alcaldía de Medellín, Medellín, Colombia.
| | - Astrid Ramírez
- Programa de Control de Vectores, Secretaría de Salud, Alcaldía de Medellín, Medellín, Colombia.
| | - Johnny Sánchez
- Programa de Control de Vectores, Secretaría de Salud, Alcaldía de Medellín, Medellín, Colombia.
| | - Juan F Silva-Alzate
- Programa de Control de Vectores, Secretaría de Salud, Alcaldía de Medellín, Medellín, Colombia.
| | - Carlos J Montes-Zuluaga
- Programa de Control de Vectores, Secretaría de Salud, Alcaldía de Medellín, Medellín, Colombia.
| | - Jorge M Cadavid
- Programa de Control de Vectores, Secretaría de Salud, Alcaldía de Medellín, Medellín, Colombia; Grupo Entomología Médica, Universidad de Antioquia, Medellín, Colombia.
| | - Enrique A Henao-Correa
- Programa de Control de Vectores, Secretaría de Salud, Alcaldía de Medellín, Medellín, Colombia.Programa de Control de Vectores, Secretaría de Salud, Alcaldía de Medellín, Medellín, Colombia.
| |
Collapse
|
4
|
Gómez M, Martínez D, Hernández C, Luna N, Patiño LH, Bohórquez Melo R, Suarez LA, Palma-Cuero M, Murcia LM, González Páez L, Estrada Bustos L, Medina MA, Ariza Campo K, Padilla HD, Zamora Flórez A, De las Salas JL, Muñoz M, Ramírez JD. Arbovirus infection in Aedes aegypti from different departments of Colombia. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.999169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The lack of precise and timely knowledge about the molecular epidemiology of arboviruses of public health importance, particularly in the vector, has limited the comprehensive control of arboviruses. In Colombia and the Americas, entomovirological studies are scarce. Therefore, this study aimed to describe the frequency of natural infection and/or co-infection by Dengue (DENV), Zika (ZIKV), and Chikungunya (CHIKV) in Aedes spp. circulating in different departments of Colombia (Amazonas, Boyacá, Magdalena, and Vichada) and identifying vector species by barcoding. Aedes mosquitoes were collected in departments with reported prevalence or incidence of arbovirus cases during 2020–2021, located in different biogeographic zones of the country: Amazonas, Boyacá, Magdalena, and Vichada. The insects were processed individually for RNA extraction, cDNA synthesis, and subsequent detection of DENV (serotypes DENV1-4 by multiplex PCR), CHIKV, and ZIKV (qRT-PCR). The positive mosquitoes for arboviruses were sequenced (Sanger method) using the subunit I of the cytochrome oxidase (COI) gene for species-level identification. In total, 558 Aedes mosquitoes were captured, 28.1% (n = 157) predominantly infected by DENV in all departments. The serotypes with the highest frequency of infection were DENV-1 and DENV-2 with 10.7% (n = 58) and 14.5% (n = 81), respectively. Coinfections between serotypes represented 3.9% (n = 22). CHIKV infection was detected in one individual (0.2%), and ZIKV infections were not detected. All infected samples were identified as A. aegypti (100%). From the COI dataset (593 bp), high levels of haplotype diversity (H = 0.948 ± 0.012) and moderate nucleotide diversity (π = 0.0225 ± 0.003) were identified, suggesting recent population expansions. Constructed phylogenetic analyses showed our COI sequences’ association with lineage I, which was reported widespread and related to a West African conspecific. We conclude that natural infection in A. aegypti by arbovirus might reflect the country’s epidemiological behavior, with a higher incidence of serotypes DENV-1 and DENV-2, which may be associated with high seroprevalence and asymptomatic infections in humans. This study demonstrates the high susceptibility of this species to arbovirus infection and confirms that A. aegypti is the main vector in Colombia. The importance of including entomovirological surveillance strategy within public health systems to understand transmission dynamics and the potential risk to the population is highlighted herein.
Collapse
|
5
|
Calle-Tobón A, Pérez-Pérez J, Forero-Pineda N, Chávez OT, Rojas-Montoya W, Rúa-Uribe G, Gómez-Palacio A. Local-scale virome depiction in Medellín, Colombia, supports significant differences between Aedes aegypti and Aedes albopictus. PLoS One 2022; 17:e0263143. [PMID: 35895627 PMCID: PMC9328524 DOI: 10.1371/journal.pone.0263143] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022] Open
Abstract
Aedes spp. comprise the primary group of mosquitoes that transmit arboviruses such as dengue, Zika, and chikungunya viruses to humans, and thus these insects pose a significant burden on public health worldwide. Advancements in next-generation sequencing and metagenomics have expanded our knowledge on the richness of RNA viruses harbored by arthropods such as Ae. aegypti and Ae. albopictus. Increasing evidence suggests that vector competence can be modified by the microbiome (comprising both bacteriome and virome) of mosquitoes present in endemic zones. Using an RNA-seq-based metataxonomic approach, this study determined the virome structure, Wolbachia presence and mitochondrial diversity of field-caught Ae. aegypti and Ae. albopictus mosquitoes in Medellín, Colombia, a municipality with a high incidence of mosquito-transmitted arboviruses. The two species are sympatric, but their core viromes differed considerably in richness, diversity, and abundance; although the community of viral species identified was large and complex, the viromes were dominated by few virus species. BLAST searches of assembled contigs suggested that at least 17 virus species (16 of which are insect-specific viruses [ISVs]) infect the Ae. aegypti population. Dengue virus 3 was detected in one sample and it was the only pathogenic virus detected. In Ae. albopictus, up to 11 ISVs and one plant virus were detected. Therefore, the virome composition appears to be species-specific. The bacterial endosymbiont Wolbachia was identified in all Ae. albopictus samples and in some Ae. aegypti samples collected after 2017. The presence of Wolbachia sp. in Ae. aegypti was not related to significant changes in the richness, diversity, or abundance of this mosquito’s virome, although it was related to an increase in the abundance of Aedes aegypti To virus 2 (Metaviridae). The mitochondrial diversity of these mosquitoes suggested that the Ae. aegypti population underwent a change that started in the second half of 2017, which coincides with the release of Wolbachia-infected mosquitoes in Medellín, indicating that the population of wMel-infected mosquitoes released has introduced new alleles into the wild Ae. aegypti population of Medellín. However, additional studies are required on the dispersal speed and intergenerational stability of wMel in Medellín and nearby areas as well as on the introgression of genetic variants in the native mosquito population.
Collapse
Affiliation(s)
- Arley Calle-Tobón
- Grupo Entomología Médica–GEM, Universidad de Antioquia, Medellín, Colombia
- * E-mail:
| | | | - Nicolás Forero-Pineda
- Laboratorio de Investigación en Genética Evolutiva–LIGE, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Boyacá, Colombia
| | - Omar Triana Chávez
- Grupo de Biología y Control de Enfermedades Infecciosas–BCEI, Universidad de Antioquia, Medellín, Colombia
| | | | | | - Andrés Gómez-Palacio
- Laboratorio de Investigación en Genética Evolutiva–LIGE, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Boyacá, Colombia
| |
Collapse
|
6
|
Entomovirological Surveillance in Schools: Are They a Source for Arboviral Diseases Transmission? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18116137. [PMID: 34204166 PMCID: PMC8201003 DOI: 10.3390/ijerph18116137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022]
Abstract
Surveillance and control activities for virus-transmitting mosquitoes have primarily focused on dwellings. There is little information about viral circulation in heavily trafficked places such as schools. We collected and analyzed data to assess the presence and prevalence of dengue, chikungunya, and Zika viruses in mosquitoes, and measured Aedes indices in schools in Medellín (Colombia) between 2016-2018. In 43.27% of 2632 visits we collected Aedes adults, creating 883 pools analyzed by RT-PCR. 14.27% of pools yielded positive for dengue or Zika (infection rates of 1.75-296.29 for Aedes aegypti). Ae. aegypti was more abundant and had a higher infection rate for all studied diseases. Aedes indices varied over time. There was no association between Aedes abundance and mosquito infection rates, but the latter did correlate with cases of arboviral disease and climate. Results suggest schools are important sources of arbovirus and health agencies should include these sites in surveillance programs; it is essential to know the source for arboviral diseases transmission and the identification of the most population groups exposed to these diseases to research and developing new strategies.
Collapse
|
7
|
Dengue-2 and Guadeloupe Mosquito Virus RNA Detected in Aedes ( Stegomyia) spp. Collected in a Vehicle Impound Yard in Santo André, SP, Brazil. INSECTS 2021; 12:insects12030248. [PMID: 33809477 PMCID: PMC8001461 DOI: 10.3390/insects12030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/17/2022]
Abstract
In 2018-2019, we conducted mosquito collections in a municipal vehicle impound yard, which is 10 km from the Serra do Mar Environmental Protection Area in Santo André, SP, Brazil. Our aim is to study arboviruses in the impound yard, to understand the transmission of arboviruses in an urban environment in Brazil. We captured the mosquitoes using human-landing catches and processed them for arbovirus detection by conventional and quantitative RT-PCR assays. We captured two mosquito species, Aedes aegypti (73 total specimens; 18 females and 55 males) and Ae. albopictus (34 specimens; 27 females and 7 males). The minimum infection rate for DENV-2 was 11.5 per 1000 (CI95%: 1-33.9). The detection of DENV-2 RNA in an Ae. albopictus female suggests that this virus might occur in high infection rates in the sampled mosquito population and is endemic in the urban areas of Santo André. In addition, Guadeloupe mosquito virus RNA was detected in an Ae. aegypti female. To our knowledge, this was the first detection of the Guadeloupe mosquito virus in Brazil.
Collapse
|
8
|
Cantillo-Barraza O, Medina M, Granada Y, Muñoz C, Valverde C, Cely F, Gonzalez P, Mendoza Y, Zuluaga S, Triana-Chávez O. Susceptibility to Insecticides and Natural Infection in Aedes aegypti: An Initiative to Improve the Mosquito Control Actions in Boyacá, Colombia. Ann Glob Health 2020; 86:94. [PMID: 32864349 PMCID: PMC7427689 DOI: 10.5334/aogh.2805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background Integrated management strategies for dengue prevention and control have been the main way to decrease the transmission of arboviruses transmitted by A. aegypti in Colombia. However, the increase of chikungunya (CHIKV), Zika, and dengue (DENV) fever cases suggests deficiencies in vector control strategies in some regions from this country. Objective This work aimed to establish a baseline susceptibility profile of A. aegypti to insecticides, determine the presence of kdr mutations associated with resistance to pyrethroids, and detect natural arbovirus infection in this vector from Moniquirá - Boyacá, one of the most endemic cities in Colombia. Methods Mosquitos were collected in six neighborhoods, and colonies established in the laboratory. Susceptibility to malathion and lambda-cyhalothrin insecticides was evaluated, and we examined the point mutations present in portions of domains I, II, III, and IV of the sodium channel gene using a simple allele-specific PCR-based assay (AS-PCR). Findings A. aegypti from Moniquirá showed decreased susceptibility to pyrethroid insecticides, and kdr mutations 419L, 1016I, and 1558C with allelic frequencies of 0.39, 0.40 and 0.95, respectively, were observed. The minimal infection rate (MIR) to DENV-1 was 44.1, while to CHIKV was 14.7. Conclusions We establish a baseline insecticide resistance, kdr mutations, and arbovirus circulation, which contain the elements necessary for the consolidation of a local surveillance strategy with an early warning system and rational selection and rotation of insecticides.
Collapse
Affiliation(s)
- Omar Cantillo-Barraza
- Grupo Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, CO
| | - Manuel Medina
- Programa de control de enfermedades transmitidas por vectores, Secretaria de Salud Departamental, Tunja, Boyacá, CO
| | - Yurany Granada
- Grupo Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, CO
| | - Camilo Muñoz
- Programa de control de enfermedades transmitidas por vectores, Secretaria de Salud Departamental, Tunja, Boyacá, CO
| | - Cesar Valverde
- Grupo Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, CO
| | - Fernando Cely
- Programa de control de enfermedades transmitidas por vectores, Secretaria de Salud Departamental, Tunja, Boyacá, CO
| | - Paola Gonzalez
- Programa de control de enfermedades transmitidas por vectores, Secretaria de Salud Departamental, Tunja, Boyacá, CO
| | - Yovanny Mendoza
- Programa de control de enfermedades transmitidas por vectores, Secretaria de Salud Departamental, Tunja, Boyacá, CO
| | - Sara Zuluaga
- Grupo Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, CO
| | - Omar Triana-Chávez
- Grupo Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, CO
| |
Collapse
|
9
|
Surveillance of Zika virus in field-caught Aedes aegypti and Aedes albopictus suggests important role of male mosquitoes in viral populations maintenance in Medellín, Colombia. INFECTION GENETICS AND EVOLUTION 2020; 85:104434. [PMID: 32580028 DOI: 10.1016/j.meegid.2020.104434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
Due to the rapid spread of Zika virus (ZIKV) infection after its emergence in the Americas in 2015 and its relationship with birth defects, it became declared a Public Health Emergency of International Concern (WHO). The main mechanism by which this virus circulates in nature is horizontal transmission between vectors and humans. However, it has been suggested that vertical transmission (parent to offspring infection) or venereal mosquito-mosquito transmission may have an important role in viral populations maintenance during inter-epidemic periods. In this study we evaluate the presence of ZIKV in males and females of Aedes aegypti and Ae. albopictus in Medellín, Colombia, throughout the post-epidemic period of 2017 and 2018. A total of 7986 mosquitoes Aedes sp. resting within houses were captured and grouped in 2768 pools; 146 of these were RT-PCR positive for ZIKV, of which 38 (26%) were male mosquito pools (36 of Ae. aegypti and 2 of Ae. albopictus). The partial NS5 gene was sequenced in all ZIKV PCR-positive pools to confirm the ZIKV presence throughout spatial and temporal sampling. The results suggest a vector role of ZIKV by Ae. Albopictus; and because it is well known that male mosquitoes are not hematophagous, the high rate detection of ZIKV in male Aedes mosquitoes pools supports the existence of vertical or venereal transmission in Medellín, which can contribute to ZIKV maintenance during low transmission periods. This study provides a better understanding of the population dynamics of ZIKV in an endemic region during an inter-epidemic period and supports alternative transmission pathways as a mechanism to maintain endemism of this arbovirus.
Collapse
|
10
|
Monteiro FJC, Mourão FRP, Ribeiro ESD, Rêgo MODS, Frances PADC, Souto RNP, Façanha MDS, Tahmasebi R, Costa ACD. Prevalence of dengue, Zika and chikungunya viruses in Aedes (Stegomyia) aegypti (Diptera: Culicidae) in a medium-sized city, Amazon, Brazil. Rev Inst Med Trop Sao Paulo 2020; 62:e10. [PMID: 32049261 PMCID: PMC7014551 DOI: 10.1590/s1678-9946202062010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/13/2020] [Indexed: 02/17/2023] Open
Abstract
Aedes aegypti is associated with epidemic diseases in Brazil, such as urban yellow fever, dengue, and more recently, chikungunya and Zika viruses infections. More information about Ae. aegypti infestation is fundamental to virological surveillance in order to ensure the effectiveness of control measures in use. Thus, the present study aims to identify and compare infestation and infectivity of Ae. aegypti females in Macapa city, Amapa State (Amazon region), Brazil, between the epidemiological weeks 2017/02 and 2018/20. A total number of 303 Ae. aegypti females were collected at 21 fixed collection points, 171 at the 10 collection points in the Marabaixo neighborhood and 132 at the 11 collection points in the Central neighborhood. Among the collected samples, only two were positive for dengue virus, with a 2.08% (2/96 pools) infectivity rate for Marabaixo. The difference between the medians of Ae. aegypti females captured in Central and Marabaixo sites was not statistically significant. The findings indicate similar mosquito infestation levels between the neighborhoods, and a low-level of mosquito infectivity, although dengue virus was found only in Marabaixo. Virological surveillance of Ae. aegypti was important to identify sites of infection and determine possible routes of transmission to enable health surveillance teams to adopt preventive strategies where infected mosquitoes are present and act faster.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Roozbeh Tahmasebi
- Universidade de São Paulo, Escola Politécnica, Programa de Pós-Graduação em Engenharia Elétrica, São Paulo, São Paulo, Brazil
| | - Antônio Charlys da Costa
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, Laboratório de Virologia, São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Arbovirus vectors of epidemiological concern in the Americas: A scoping review of entomological studies on Zika, dengue and chikungunya virus vectors. PLoS One 2020; 15:e0220753. [PMID: 32027652 PMCID: PMC7004335 DOI: 10.1371/journal.pone.0220753] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/02/2020] [Indexed: 11/20/2022] Open
Abstract
Background Three arthropod-borne viruses (arboviruses) causing human disease have been the focus of a large number of studies in the Americas since 2013 due to their global spread and epidemiological impacts: Zika, dengue, and chikungunya viruses. A large proportion of infections by these viruses are asymptomatic. However, all three viruses are associated with moderate to severe health consequences in a small proportion of cases. Two mosquito species, Aedes aegypti and Aedes albopictus, are among the world’s most prominent arboviral vectors, and are known vectors for all three viruses in the Americas. Objectives This review summarizes the state of the entomological literature surrounding the mosquito vectors of Zika, dengue and chikungunya viruses and factors affecting virus transmission. The rationale of the review was to identify and characterize entomological studies that have been conducted in the Americas since the introduction of chikungunya virus in 2013, encompassing a period of arbovirus co-circulation, and guide future research based on identified knowledge gaps. Methods The preliminary search for this review was conducted on PubMed (National Library of Health, Bethesda, MD, United States). The search included the terms ‘zika’ OR ‘dengue’ OR ‘chikungunya’ AND ‘vector’ OR ‘Aedes aegypti’ OR ‘Aedes albopictus’. The search was conducted on March 1st of 2018, and included all studies since January 1st of 2013. Results A total of 96 studies were included in the scoping review after initial screening and subsequent exclusion of out-of-scope studies, secondary data publications, and studies unavailable in English language. Key findings We observed a steady increase in number of publications, from 2013 to 2018, with half of all studies published from January 2017 to March 2018. Interestingly, information on Zika virus vector species composition was abundant, but sparse on Zika virus transmission dynamics. Few studies examined natural infection rates of Zika virus, vertical transmission, or co-infection with other viruses. This is in contrast to the wealth of research available on natural infection and co-infection for dengue and chikungunya viruses, although vertical transmission research was sparse for all three viruses.
Collapse
|
12
|
Gutiérrez-Bugallo G, Rodríguez-Roche R, Díaz G, Pérez M, Mendizábal ME, Peraza I, Vázquez AA, Alvarez M, Rodríguez M, Bisset JA, Guzmán MG. Spatio-temporal distribution of vertically transmitted dengue viruses byAedes aegypti(Diptera: Culicidae) from Arroyo Naranjo, Havana, Cuba. Trop Med Int Health 2018; 23:1342-1349. [DOI: 10.1111/tmi.13162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gladys Gutiérrez-Bugallo
- Department of Vector Control; Center for Research; Diagnostic and Reference; Institute of Tropical Medicine Pedro Kourí; PAHO-WHO Collaborating Center for Dengue and its Control; Havana Cuba
| | | | - Gisell Díaz
- Department of Virology; Center for Research; Diagnostic and Reference; Institute of Tropical Medicine Pedro Kourí; PAHO-WHO Collaborating Center for Dengue and its Control; Havana Cuba
| | - Magaly Pérez
- Unidad Provincial de Vigilancia y Lucha Antivectorial; Centro Provincial de Higiene y Epidemiología; Havana Cuba
| | - María Elena Mendizábal
- Unidad Provincial de Vigilancia y Lucha Antivectorial; Centro Provincial de Higiene y Epidemiología; Havana Cuba
| | - Iris Peraza
- Unidad Provincial de Vigilancia y Lucha Antivectorial; Centro Provincial de Higiene y Epidemiología; Havana Cuba
| | - Antonio A. Vázquez
- Department of Vector Control; Center for Research; Diagnostic and Reference; Institute of Tropical Medicine Pedro Kourí; PAHO-WHO Collaborating Center for Dengue and its Control; Havana Cuba
| | - Mayling Alvarez
- Department of Virology; Center for Research; Diagnostic and Reference; Institute of Tropical Medicine Pedro Kourí; PAHO-WHO Collaborating Center for Dengue and its Control; Havana Cuba
| | - Magdalena Rodríguez
- Department of Vector Control; Center for Research; Diagnostic and Reference; Institute of Tropical Medicine Pedro Kourí; PAHO-WHO Collaborating Center for Dengue and its Control; Havana Cuba
| | - Juan A. Bisset
- Department of Vector Control; Center for Research; Diagnostic and Reference; Institute of Tropical Medicine Pedro Kourí; PAHO-WHO Collaborating Center for Dengue and its Control; Havana Cuba
| | - María G. Guzmán
- Department of Virology; Center for Research; Diagnostic and Reference; Institute of Tropical Medicine Pedro Kourí; PAHO-WHO Collaborating Center for Dengue and its Control; Havana Cuba
| |
Collapse
|
13
|
Introduction to disease vectors. Dis Mon 2018. [DOI: 10.1016/j.disamonth.2018.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
McFee RB, Bush L, Vazquez-Pertejo MT. Mosquito vectors. Dis Mon 2018; 64:213-221. [PMID: 29549964 DOI: 10.1016/j.disamonth.2018.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Robin B McFee
- Department of Emergency/Family Medicine, Debusk College of Osteopathic Medicine, Lincoln Memorial University, USA.
| | - Larry Bush
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA; University of Miami-Miller School of Medicine, Palm Beach County, FL, USA
| | - Maria T Vazquez-Pertejo
- Department of Pathology and Laboratory Medicine, Wellington Regional Medical Center, Blue Health, LLC., Palm Beach County, FL, USA
| |
Collapse
|