1
|
Attallah O. Skin cancer classification leveraging multi-directional compact convolutional neural network ensembles and gabor wavelets. Sci Rep 2024; 14:20637. [PMID: 39232043 PMCID: PMC11375051 DOI: 10.1038/s41598-024-69954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024] Open
Abstract
Skin cancer (SC) is an important medical condition that necessitates prompt identification to ensure timely treatment. Although visual evaluation by dermatologists is considered the most reliable method, its efficacy is subjective and laborious. Deep learning-based computer-aided diagnostic (CAD) platforms have become valuable tools for supporting dermatologists. Nevertheless, current CAD tools frequently depend on Convolutional Neural Networks (CNNs) with huge amounts of deep layers and hyperparameters, single CNN model methodologies, large feature space, and exclusively utilise spatial image information, which restricts their effectiveness. This study presents SCaLiNG, an innovative CAD tool specifically developed to address and surpass these constraints. SCaLiNG leverages a collection of three compact CNNs and Gabor Wavelets (GW) to acquire a comprehensive feature vector consisting of spatial-textural-frequency attributes. SCaLiNG gathers a wide range of image details by breaking down these photos into multiple directional sub-bands using GW, and then learning several CNNs using those sub-bands and the original picture. SCaLiNG also combines attributes taken from various CNNs trained with the actual images and subbands derived from GW. This fusion process correspondingly improves diagnostic accuracy due to the thorough representation of attributes. Furthermore, SCaLiNG applies a feature selection approach which further enhances the model's performance by choosing the most distinguishing features. Experimental findings indicate that SCaLiNG maintains a classification accuracy of 0.9170 in categorising SC subcategories, surpassing conventional single-CNN models. The outstanding performance of SCaLiNG underlines its ability to aid dermatologists in swiftly and precisely recognising and classifying SC, thereby enhancing patient outcomes.
Collapse
Affiliation(s)
- Omneya Attallah
- Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, 21937, Egypt.
- Wearables, Biosensing, and Biosignal Processing Laboratory, Arab Academy for Science, Technology, and Maritime Transport, Alexandria, 21937, Egypt.
| |
Collapse
|
2
|
Attallah O. Skin-CAD: Explainable deep learning classification of skin cancer from dermoscopic images by feature selection of dual high-level CNNs features and transfer learning. Comput Biol Med 2024; 178:108798. [PMID: 38925085 DOI: 10.1016/j.compbiomed.2024.108798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Skin cancer (SC) significantly impacts many individuals' health all over the globe. Hence, it is imperative to promptly identify and diagnose such conditions at their earliest stages using dermoscopic imaging. Computer-aided diagnosis (CAD) methods relying on deep learning techniques especially convolutional neural networks (CNN) can effectively address this issue with outstanding outcomes. Nevertheless, such black box methodologies lead to a deficiency in confidence as dermatologists are incapable of comprehending and verifying the predictions that were made by these models. This article presents an advanced an explainable artificial intelligence (XAI) based CAD system named "Skin-CAD" which is utilized for the classification of dermoscopic photographs of SC. The system accurately categorises the photographs into two categories: benign or malignant, and further classifies them into seven subclasses of SC. Skin-CAD employs four CNNs of different topologies and deep layers. It gathers features out of a pair of deep layers of every CNN, particularly the final pooling and fully connected layers, rather than merely depending on attributes from a single deep layer. Skin-CAD applies the principal component analysis (PCA) dimensionality reduction approach to minimise the dimensions of pooling layer features. This also reduces the complexity of the training procedure compared to using deep features from a CNN that has a substantial size. Furthermore, it combines the reduced pooling features with the fully connected features of each CNN. Additionally, Skin-CAD integrates the dual-layer features of the four CNNs instead of entirely depending on the features of a single CNN architecture. In the end, it utilizes a feature selection step to determine the most important deep attributes. This helps to decrease the general size of the feature set and streamline the classification process. Predictions are analysed in more depth using the local interpretable model-agnostic explanations (LIME) approach. This method is used to create visual interpretations that align with an already existing viewpoint and adhere to recommended standards for general clarifications. Two benchmark datasets are employed to validate the efficiency of Skin-CAD which are the Skin Cancer: Malignant vs. Benign and HAM10000 datasets. The maximum accuracy achieved using Skin-CAD is 97.2 % and 96.5 % for the Skin Cancer: Malignant vs. Benign and HAM10000 datasets respectively. The findings of Skin-CAD demonstrate its potential to assist professional dermatologists in detecting and classifying SC precisely and quickly.
Collapse
Affiliation(s)
- Omneya Attallah
- Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandri, 21937, Egypt; Wearables, Biosensing, and Biosignal Processing Laboratory, Arab Academy for Science, Technology and Maritime Transport, Alexandria, 21937, Egypt.
| |
Collapse
|
3
|
Sharkas M, Attallah O. Color-CADx: a deep learning approach for colorectal cancer classification through triple convolutional neural networks and discrete cosine transform. Sci Rep 2024; 14:6914. [PMID: 38519513 PMCID: PMC10959971 DOI: 10.1038/s41598-024-56820-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
Colorectal cancer (CRC) exhibits a significant death rate that consistently impacts human lives worldwide. Histopathological examination is the standard method for CRC diagnosis. However, it is complicated, time-consuming, and subjective. Computer-aided diagnostic (CAD) systems using digital pathology can help pathologists diagnose CRC faster and more accurately than manual histopathology examinations. Deep learning algorithms especially convolutional neural networks (CNNs) are advocated for diagnosis of CRC. Nevertheless, most previous CAD systems obtained features from one CNN, these features are of huge dimension. Also, they relied on spatial information only to achieve classification. In this paper, a CAD system is proposed called "Color-CADx" for CRC recognition. Different CNNs namely ResNet50, DenseNet201, and AlexNet are used for end-to-end classification at different training-testing ratios. Moreover, features are extracted from these CNNs and reduced using discrete cosine transform (DCT). DCT is also utilized to acquire spectral representation. Afterward, it is used to further select a reduced set of deep features. Furthermore, DCT coefficients obtained in the previous step are concatenated and the analysis of variance (ANOVA) feature selection approach is applied to choose significant features. Finally, machine learning classifiers are employed for CRC classification. Two publicly available datasets were investigated which are the NCT-CRC-HE-100 K dataset and the Kather_texture_2016_image_tiles dataset. The highest achieved accuracy reached 99.3% for the NCT-CRC-HE-100 K dataset and 96.8% for the Kather_texture_2016_image_tiles dataset. DCT and ANOVA have successfully lowered feature dimensionality thus reducing complexity. Color-CADx has demonstrated efficacy in terms of accuracy, as its performance surpasses that of the most recent advancements.
Collapse
Affiliation(s)
- Maha Sharkas
- Electronics and Communications Engineering Department, College of Engineering and Technology, Arab Academy for Science, Technology, and Maritime Transport, Alexandria, Egypt
| | - Omneya Attallah
- Electronics and Communications Engineering Department, College of Engineering and Technology, Arab Academy for Science, Technology, and Maritime Transport, Alexandria, Egypt.
- Wearables, Biosensing, and Biosignal Processing Laboratory, Arab Academy for Science, Technology and Maritime Transport, Alexandria, 21937, Egypt.
| |
Collapse
|
4
|
Jiang X, Hu Z, Wang S, Zhang Y. Deep Learning for Medical Image-Based Cancer Diagnosis. Cancers (Basel) 2023; 15:3608. [PMID: 37509272 PMCID: PMC10377683 DOI: 10.3390/cancers15143608] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: The application of deep learning technology to realize cancer diagnosis based on medical images is one of the research hotspots in the field of artificial intelligence and computer vision. Due to the rapid development of deep learning methods, cancer diagnosis requires very high accuracy and timeliness as well as the inherent particularity and complexity of medical imaging. A comprehensive review of relevant studies is necessary to help readers better understand the current research status and ideas. (2) Methods: Five radiological images, including X-ray, ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI), positron emission computed tomography (PET), and histopathological images, are reviewed in this paper. The basic architecture of deep learning and classical pretrained models are comprehensively reviewed. In particular, advanced neural networks emerging in recent years, including transfer learning, ensemble learning (EL), graph neural network, and vision transformer (ViT), are introduced. Five overfitting prevention methods are summarized: batch normalization, dropout, weight initialization, and data augmentation. The application of deep learning technology in medical image-based cancer analysis is sorted out. (3) Results: Deep learning has achieved great success in medical image-based cancer diagnosis, showing good results in image classification, image reconstruction, image detection, image segmentation, image registration, and image synthesis. However, the lack of high-quality labeled datasets limits the role of deep learning and faces challenges in rare cancer diagnosis, multi-modal image fusion, model explainability, and generalization. (4) Conclusions: There is a need for more public standard databases for cancer. The pre-training model based on deep neural networks has the potential to be improved, and special attention should be paid to the research of multimodal data fusion and supervised paradigm. Technologies such as ViT, ensemble learning, and few-shot learning will bring surprises to cancer diagnosis based on medical images.
Collapse
Grants
- RM32G0178B8 BBSRC
- MC_PC_17171 MRC, UK
- RP202G0230 Royal Society, UK
- AA/18/3/34220 BHF, UK
- RM60G0680 Hope Foundation for Cancer Research, UK
- P202PF11 GCRF, UK
- RP202G0289 Sino-UK Industrial Fund, UK
- P202ED10, P202RE969 LIAS, UK
- P202RE237 Data Science Enhancement Fund, UK
- 24NN201 Fight for Sight, UK
- OP202006 Sino-UK Education Fund, UK
- RM32G0178B8 BBSRC, UK
- 2023SJZD125 Major project of philosophy and social science research in colleges and universities in Jiangsu Province, China
Collapse
Affiliation(s)
- Xiaoyan Jiang
- School of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing 210038, China; (X.J.); (Z.H.)
| | - Zuojin Hu
- School of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing 210038, China; (X.J.); (Z.H.)
| | - Shuihua Wang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
| | - Yudong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
| |
Collapse
|
5
|
Alhussan AA, Abdelhamid AA, Towfek SK, Ibrahim A, Abualigah L, Khodadadi N, Khafaga DS, Al-Otaibi S, Ahmed AE. Classification of Breast Cancer Using Transfer Learning and Advanced Al-Biruni Earth Radius Optimization. Biomimetics (Basel) 2023; 8:270. [PMID: 37504158 PMCID: PMC10377265 DOI: 10.3390/biomimetics8030270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023] Open
Abstract
Breast cancer is one of the most common cancers in women, with an estimated 287,850 new cases identified in 2022. There were 43,250 female deaths attributed to this malignancy. The high death rate associated with this type of cancer can be reduced with early detection. Nonetheless, a skilled professional is always necessary to manually diagnose this malignancy from mammography images. Many researchers have proposed several approaches based on artificial intelligence. However, they still face several obstacles, such as overlapping cancerous and noncancerous regions, extracting irrelevant features, and inadequate training models. In this paper, we developed a novel computationally automated biological mechanism for categorizing breast cancer. Using a new optimization approach based on the Advanced Al-Biruni Earth Radius (ABER) optimization algorithm, a boosting to the classification of breast cancer cases is realized. The stages of the proposed framework include data augmentation, feature extraction using AlexNet based on transfer learning, and optimized classification using a convolutional neural network (CNN). Using transfer learning and optimized CNN for classification improved the accuracy when the results are compared to recent approaches. Two publicly available datasets are utilized to evaluate the proposed framework, and the average classification accuracy is 97.95%. To ensure the statistical significance and difference between the proposed methodology, additional tests are conducted, such as analysis of variance (ANOVA) and Wilcoxon, in addition to evaluating various statistical analysis metrics. The results of these tests emphasized the effectiveness and statistical difference of the proposed methodology compared to current methods.
Collapse
Affiliation(s)
- Amel Ali Alhussan
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abdelaziz A Abdelhamid
- Department of Computer Science, College of Computing and Information Technology, Shaqra University, Shaqra 11961, Saudi Arabia
- Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, Cairo 11566, Egypt
| | - S K Towfek
- Computer Science and Intelligent Systems Research Center, Blacksburg, VA 24060, USA
- Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura 35111, Egypt
| | - Abdelhameed Ibrahim
- Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
| | - Laith Abualigah
- Computer Science Department, Prince Hussein Bin Abdullah Faculty for Information Technology, Al al-Bayt University, Mafraq 25113, Jordan
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan
- MEU Research Unit, Middle East University, Amman 11831, Jordan
- School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| | - Nima Khodadadi
- Department of Civil and Architectural Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Doaa Sami Khafaga
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Shaha Al-Otaibi
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ayman Em Ahmed
- Faculty of Engineering, King Salman International University, El-Tor 8701301, Egypt
| |
Collapse
|
6
|
Attallah O. RADIC:A tool for diagnosing COVID-19 from chest CT and X-ray scans using deep learning and quad-radiomics. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS : AN INTERNATIONAL JOURNAL SPONSORED BY THE CHEMOMETRICS SOCIETY 2023; 233:104750. [PMID: 36619376 PMCID: PMC9807270 DOI: 10.1016/j.chemolab.2022.104750] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 05/28/2023]
Abstract
Deep learning (DL) algorithms have demonstrated a high ability to perform speedy and accurate COVID-19 diagnosis utilizing computed tomography (CT) and X-Ray scans. The spatial information in these images was used to train DL models in the majority of relevant studies. However, training these models with images generated by radiomics approaches could enhance diagnostic accuracy. Furthermore, combining information from several radiomics approaches with time-frequency representations of the COVID-19 patterns can increase performance even further. This study introduces "RADIC", an automated tool that uses three DL models that are trained using radiomics-generated images to detect COVID-19. First, four radiomics approaches are used to analyze the original CT and X-ray images. Next, each of the three DL models is trained on a different set of radiomics, X-ray, and CT images. Then, for each DL model, deep features are obtained, and their dimensions are decreased using the Fast Walsh Hadamard Transform, yielding a time-frequency representation of the COVID-19 patterns. The tool then uses the discrete cosine transform to combine these deep features. Four classification models are then used to achieve classification. In order to validate the performance of RADIC, two benchmark datasets (CT and X-Ray) for COVID-19 are employed. The final accuracy attained using RADIC is 99.4% and 99% for the first and second datasets respectively. To prove the competing ability of RADIC, its performance is compared with related studies in the literature. The results reflect that RADIC achieve superior performance compared to other studies. The results of the proposed tool prove that a DL model can be trained more effectively with images generated by radiomics techniques than the original X-Ray and CT images. Besides, the incorporation of deep features extracted from DL models trained with multiple radiomics approaches will improve diagnostic accuracy.
Collapse
Affiliation(s)
- Omneya Attallah
- Department of Electronics and Communications Engineering, College of Engineering & Technology, Arab Academy for Science, Technology & Maritime Transport, Alexandria, Egypt
| |
Collapse
|
7
|
Auto-MyIn: Automatic diagnosis of myocardial infarction via multiple GLCMs, CNNs, and SVMs. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Ogundokun RO, Misra S, Akinrotimi AO, Ogul H. MobileNet-SVM: A Lightweight Deep Transfer Learning Model to Diagnose BCH Scans for IoMT-Based Imaging Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:656. [PMID: 36679455 PMCID: PMC9863875 DOI: 10.3390/s23020656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Many individuals worldwide pass away as a result of inadequate procedures for prompt illness identification and subsequent treatment. A valuable life can be saved or at least extended with the early identification of serious illnesses, such as various cancers and other life-threatening conditions. The development of the Internet of Medical Things (IoMT) has made it possible for healthcare technology to offer the general public efficient medical services and make a significant contribution to patients' recoveries. By using IoMT to diagnose and examine BreakHis v1 400× breast cancer histology (BCH) scans, disorders may be quickly identified and appropriate treatment can be given to a patient. Imaging equipment having the capability of auto-analyzing acquired pictures can be used to achieve this. However, the majority of deep learning (DL)-based image classification approaches are of a large number of parameters and unsuitable for application in IoMT-centered imaging sensors. The goal of this study is to create a lightweight deep transfer learning (DTL) model suited for BCH scan examination and has a good level of accuracy. In this study, a lightweight DTL-based model "MobileNet-SVM", which is the hybridization of MobileNet and Support Vector Machine (SVM), for auto-classifying BreakHis v1 400× BCH images is presented. When tested against a real dataset of BreakHis v1 400× BCH images, the suggested technique achieved a training accuracy of 100% on the training dataset. It also obtained an accuracy of 91% and an F1-score of 91.35 on the test dataset. Considering how complicated BCH scans are, the findings are encouraging. The MobileNet-SVM model is ideal for IoMT imaging equipment in addition to having a high degree of precision. According to the simulation findings, the suggested model requires a small computation speed and time.
Collapse
Affiliation(s)
- Roseline Oluwaseun Ogundokun
- Department of Multimedia Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania
- Department of Computer Science, Landmark University, Omu Aran 251103, Kwara, Nigeria
| | - Sanjay Misra
- Department of Computer Science and Communication, Østfold University College, 1757 Halden, Norway
| | | | - Hasan Ogul
- Department of Computer Science and Communication, Østfold University College, 1757 Halden, Norway
| |
Collapse
|
9
|
GabROP: Gabor Wavelets-Based CAD for Retinopathy of Prematurity Diagnosis via Convolutional Neural Networks. Diagnostics (Basel) 2023; 13:diagnostics13020171. [PMID: 36672981 PMCID: PMC9857608 DOI: 10.3390/diagnostics13020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
One of the most serious and dangerous ocular problems in premature infants is retinopathy of prematurity (ROP), a proliferative vascular disease. Ophthalmologists can use automatic computer-assisted diagnostic (CAD) tools to help them make a safe, accurate, and low-cost diagnosis of ROP. All previous CAD tools for ROP diagnosis use the original fundus images. Unfortunately, learning the discriminative representation from ROP-related fundus images is difficult. Textural analysis techniques, such as Gabor wavelets (GW), can demonstrate significant texture information that can help artificial intelligence (AI) based models to improve diagnostic accuracy. In this paper, an effective and automated CAD tool, namely GabROP, based on GW and multiple deep learning (DL) models is proposed. Initially, GabROP analyzes fundus images using GW and generates several sets of GW images. Next, these sets of images are used to train three convolutional neural networks (CNNs) models independently. Additionally, the actual fundus pictures are used to build these networks. Using the discrete wavelet transform (DWT), texture features retrieved from every CNN trained with various sets of GW images are combined to create a textural-spectral-temporal demonstration. Afterward, for each CNN, these features are concatenated with spatial deep features obtained from the original fundus images. Finally, the previous concatenated features of all three CNN are incorporated using the discrete cosine transform (DCT) to lessen the size of features caused by the fusion process. The outcomes of GabROP show that it is accurate and efficient for ophthalmologists. Additionally, the effectiveness of GabROP is compared to recently developed ROP diagnostic techniques. Due to GabROP's superior performance compared to competing tools, ophthalmologists may be able to identify ROP more reliably and precisely, which could result in a reduction in diagnostic effort and examination time.
Collapse
|
10
|
Attallah O. MonDiaL-CAD: Monkeypox diagnosis via selected hybrid CNNs unified with feature selection and ensemble learning. Digit Health 2023; 9:20552076231180054. [PMID: 37312961 PMCID: PMC10259124 DOI: 10.1177/20552076231180054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
Objective Recently, monkeypox virus is slowly evolving and there are fears it will spread as COVID-19. Computer-aided diagnosis (CAD) based on deep learning approaches especially convolutional neural network (CNN) can assist in the rapid determination of reported incidents. The current CADs were mostly based on an individual CNN. Few CADs employed multiple CNNs but did not investigate which combination of CNNs has a greater impact on the performance. Furthermore, they relied on only spatial information of deep features to train their models. This study aims to construct a CAD tool named "Monkey-CAD" that can address the previous limitations and automatically diagnose monkeypox rapidly and accurately. Methods Monkey-CAD extracts features from eight CNNs and then examines the best possible combination of deep features that influence classification. It employs discrete wavelet transform (DWT) to merge features which diminishes fused features' size and provides a time-frequency demonstration. These deep features' sizes are then further reduced via an entropy-based feature selection approach. These reduced fused features are finally used to deliver a better representation of the input features and feed three ensemble classifiers. Results Two freely accessible datasets called Monkeypox skin image (MSID) and Monkeypox skin lesion (MSLD) are employed in this study. Monkey-CAD could discriminate among cases with and without Monkeypox achieving an accuracy of 97.1% for MSID and 98.7% for MSLD datasets respectively. Conclusions Such promising results demonstrate that the Monkey-CAD can be employed to assist health practitioners. They also verify that fusing deep features from selected CNNs can boost performance.
Collapse
Affiliation(s)
- Omneya Attallah
- Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| |
Collapse
|
11
|
Zhao Y, Zhang J, Hu D, Qu H, Tian Y, Cui X. Application of Deep Learning in Histopathology Images of Breast Cancer: A Review. MICROMACHINES 2022; 13:2197. [PMID: 36557496 PMCID: PMC9781697 DOI: 10.3390/mi13122197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
With the development of artificial intelligence technology and computer hardware functions, deep learning algorithms have become a powerful auxiliary tool for medical image analysis. This study was an attempt to use statistical methods to analyze studies related to the detection, segmentation, and classification of breast cancer in pathological images. After an analysis of 107 articles on the application of deep learning to pathological images of breast cancer, this study is divided into three directions based on the types of results they report: detection, segmentation, and classification. We introduced and analyzed models that performed well in these three directions and summarized the related work from recent years. Based on the results obtained, the significant ability of deep learning in the application of breast cancer pathological images can be recognized. Furthermore, in the classification and detection of pathological images of breast cancer, the accuracy of deep learning algorithms has surpassed that of pathologists in certain circumstances. Our study provides a comprehensive review of the development of breast cancer pathological imaging-related research and provides reliable recommendations for the structure of deep learning network models in different application scenarios.
Collapse
Affiliation(s)
- Yue Zhao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang 110169, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Shenyang 110169, China
| | - Jie Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Dayu Hu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Hui Qu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Xiaoyu Cui
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang 110169, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Shenyang 110169, China
| |
Collapse
|
12
|
Attallah O, Aslan MF, Sabanci K. A Framework for Lung and Colon Cancer Diagnosis via Lightweight Deep Learning Models and Transformation Methods. Diagnostics (Basel) 2022; 12:2926. [PMID: 36552933 PMCID: PMC9776637 DOI: 10.3390/diagnostics12122926] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Among the leading causes of mortality and morbidity in people are lung and colon cancers. They may develop concurrently in organs and negatively impact human life. If cancer is not diagnosed in its early stages, there is a great likelihood that it will spread to the two organs. The histopathological detection of such malignancies is one of the most crucial components of effective treatment. Although the process is lengthy and complex, deep learning (DL) techniques have made it feasible to complete it more quickly and accurately, enabling researchers to study a lot more patients in a short time period and for a lot less cost. Earlier studies relied on DL models that require great computational ability and resources. Most of them depended on individual DL models to extract features of high dimension or to perform diagnoses. However, in this study, a framework based on multiple lightweight DL models is proposed for the early detection of lung and colon cancers. The framework utilizes several transformation methods that perform feature reduction and provide a better representation of the data. In this context, histopathology scans are fed into the ShuffleNet, MobileNet, and SqueezeNet models. The number of deep features acquired from these models is subsequently reduced using principal component analysis (PCA) and fast Walsh-Hadamard transform (FHWT) techniques. Following that, discrete wavelet transform (DWT) is used to fuse the FWHT's reduced features obtained from the three DL models. Additionally, the three DL models' PCA features are concatenated. Finally, the diminished features as a result of PCA and FHWT-DWT reduction and fusion processes are fed to four distinct machine learning algorithms, reaching the highest accuracy of 99.6%. The results obtained using the proposed framework based on lightweight DL models show that it can distinguish lung and colon cancer variants with a lower number of features and less computational complexity compared to existing methods. They also prove that utilizing transformation methods to reduce features can offer a superior interpretation of the data, thus improving the diagnosis procedure.
Collapse
Affiliation(s)
- Omneya Attallah
- Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt
| | - Muhammet Fatih Aslan
- Department of Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, 70100 Karaman, Turkey
| | - Kadir Sabanci
- Department of Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, 70100 Karaman, Turkey
| |
Collapse
|
13
|
Wakili MA, Shehu HA, Sharif MH, Sharif MHU, Umar A, Kusetogullari H, Ince IF, Uyaver S. Classification of Breast Cancer Histopathological Images Using DenseNet and Transfer Learning. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:8904768. [PMID: 36262621 PMCID: PMC9576400 DOI: 10.1155/2022/8904768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/19/2022] [Accepted: 07/30/2022] [Indexed: 11/22/2022]
Abstract
Breast cancer is one of the most common invading cancers in women. Analyzing breast cancer is nontrivial and may lead to disagreements among experts. Although deep learning methods achieved an excellent performance in classification tasks including breast cancer histopathological images, the existing state-of-the-art methods are computationally expensive and may overfit due to extracting features from in-distribution images. In this paper, our contribution is mainly twofold. First, we perform a short survey on deep-learning-based models for classifying histopathological images to investigate the most popular and optimized training-testing ratios. Our findings reveal that the most popular training-testing ratio for histopathological image classification is 70%: 30%, whereas the best performance (e.g., accuracy) is achieved by using the training-testing ratio of 80%: 20% on an identical dataset. Second, we propose a method named DenTnet to classify breast cancer histopathological images chiefly. DenTnet utilizes the principle of transfer learning to solve the problem of extracting features from the same distribution using DenseNet as a backbone model. The proposed DenTnet method is shown to be superior in comparison to a number of leading deep learning methods in terms of detection accuracy (up to 99.28% on BreaKHis dataset deeming training-testing ratio of 80%: 20%) with good generalization ability and computational speed. The limitation of existing methods including the requirement of high computation and utilization of the same feature distribution is mitigated by dint of the DenTnet.
Collapse
Affiliation(s)
| | - Harisu Abdullahi Shehu
- School of Engineering and Computer Science, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Md. Haidar Sharif
- College of Computer Science and Engineering, University of Hail, Hail 2440, Saudi Arabia
| | - Md. Haris Uddin Sharif
- School of Computer & Information Sciences, University of the Cumberlands, Williamsburg, KY 40769, USA
| | - Abubakar Umar
- Abubakar Tafawa Balewa University, Bauchi 740272, Nigeria
| | - Huseyin Kusetogullari
- Department of Computer Science, Blekinge Institute of Technology, Karlskrona 37141, Sweden
| | - Ibrahim Furkan Ince
- Department of Digital Game Design, Nisantasi University, 34485 Istanbul, Turkey
| | - Sahin Uyaver
- Department of Energy Science and Technologies, Turkish-German University, 34820 Istanbul, Turkey
| |
Collapse
|
14
|
Deep and dense convolutional neural network for multi category classification of magnification specific and magnification independent breast cancer histopathological images. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Attallah O, Samir A. A wavelet-based deep learning pipeline for efficient COVID-19 diagnosis via CT slices. Appl Soft Comput 2022; 128:109401. [PMID: 35919069 PMCID: PMC9335861 DOI: 10.1016/j.asoc.2022.109401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/20/2022] [Accepted: 07/25/2022] [Indexed: 12/30/2022]
Abstract
The quick diagnosis of the novel coronavirus (COVID-19) disease is vital to prevent its propagation and improve therapeutic outcomes. Computed tomography (CT) is believed to be an effective tool for diagnosing COVID-19, however, the CT scan contains hundreds of slices that are complex to be analyzed and could cause delays in diagnosis. Artificial intelligence (AI) especially deep learning (DL), could facilitate and speed up COVID-19 diagnosis from such scans. Several studies employed DL approaches based on 2D CT images from a single view, nevertheless, 3D multiview CT slices demonstrated an excellent ability to enhance the efficiency of COVID-19 diagnosis. The majority of DL-based studies utilized the spatial information of the original CT images to train their models, though, using spectral–temporal information could improve the detection of COVID-19. This article proposes a DL-based pipeline called CoviWavNet for the automatic diagnosis of COVID-19. CoviWavNet uses a 3D multiview dataset called OMNIAHCOV. Initially, it analyzes the CT slices using multilevel discrete wavelet decomposition (DWT) and then uses the heatmaps of the approximation levels to train three ResNet CNN models. These ResNets use the spectral–temporal information of such images to perform classification. Subsequently, it investigates whether the combination of spatial information with spectral–temporal information could improve the diagnostic accuracy of COVID-19. For this purpose, it extracts deep spectral–temporal features from such ResNets using transfer learning and integrates them with deep spatial features extracted from the same ResNets trained with the original CT slices. Then, it utilizes a feature selection step to reduce the dimension of such integrated features and use them as inputs to three support vector machine (SVM) classifiers. To further validate the performance of CoviWavNet, a publicly available benchmark dataset called SARS-COV-2-CT-Scan is employed. The results of CoviWavNet have demonstrated that using the spectral–temporal information of the DWT heatmap images to train the ResNets is superior to utilizing the spatial information of the original CT images. Furthermore, integrating deep spectral–temporal features with deep spatial features has enhanced the classification accuracy of the three SVM classifiers reaching a final accuracy of 99.33% and 99.7% for the OMNIAHCOV and SARS-COV-2-CT-Scan datasets respectively. These accuracies verify the outstanding performance of CoviWavNet compared to other related studies. Thus, CoviWavNet can help radiologists in the rapid and accurate diagnosis of COVID-19 diagnosis.
Collapse
Affiliation(s)
- Omneya Attallah
- Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt
| | - Ahmed Samir
- Department of Radiodiagnosis, Faculty of Medicine, University of Alexandria, Egypt
| |
Collapse
|
16
|
Sheikh TS, Kim JY, Shim J, Cho M. Unsupervised Learning Based on Multiple Descriptors for WSIs Diagnosis. Diagnostics (Basel) 2022; 12:diagnostics12061480. [PMID: 35741289 PMCID: PMC9222016 DOI: 10.3390/diagnostics12061480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
An automatic pathological diagnosis is a challenging task because histopathological images with different cellular heterogeneity representations are sometimes limited. To overcome this, we investigated how the holistic and local appearance features with limited information can be fused to enhance the analysis performance. We propose an unsupervised deep learning model for whole-slide image diagnosis, which uses stacked autoencoders simultaneously feeding multiple-image descriptors such as the histogram of oriented gradients and local binary patterns along with the original image to fuse the heterogeneous features. The pre-trained latent vectors are extracted from each autoencoder, and these fused feature representations are utilized for classification. We observed that training with additional descriptors helps the model to overcome the limitations of multiple variants and the intricate cellular structure of histopathology data by various experiments. Our model outperforms existing state-of-the-art approaches by achieving the highest accuracies of 87.2 for ICIAR2018, 94.6 for Dartmouth, and other significant metrics for public benchmark datasets. Our model does not rely on a specific set of pre-trained features based on classifiers to achieve high performance. Unsupervised spaces are learned from the number of independent multiple descriptors and can be used with different variants of classifiers to classify cancer diseases from whole-slide images. Furthermore, we found that the proposed model classifies the types of breast and lung cancer similar to the viewpoint of pathologists by visualization. We also designed our whole-slide image processing toolbox to extract and process the patches from whole-slide images.
Collapse
Affiliation(s)
| | - Jee-Yeon Kim
- Department of Pathology, Pusan National University Yangsan Hospital, School of Medicine, Pusan National University, Yangsan-si 50612, Korea;
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (J.S.); (M.C.)
| | - Migyung Cho
- Department of Computer & Media Engineering, Tongmyong University, Busan 48520, Korea;
- Correspondence: (J.S.); (M.C.)
| |
Collapse
|
17
|
Attallah O. An Intelligent ECG-Based Tool for Diagnosing COVID-19 via Ensemble Deep Learning Techniques. BIOSENSORS 2022; 12:299. [PMID: 35624600 PMCID: PMC9138764 DOI: 10.3390/bios12050299] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 06/01/2023]
Abstract
Diagnosing COVID-19 accurately and rapidly is vital to control its quick spread, lessen lockdown restrictions, and decrease the workload on healthcare structures. The present tools to detect COVID-19 experience numerous shortcomings. Therefore, novel diagnostic tools are to be examined to enhance diagnostic accuracy and avoid the limitations of these tools. Earlier studies indicated multiple structures of cardiovascular alterations in COVID-19 cases which motivated the realization of using ECG data as a tool for diagnosing the novel coronavirus. This study introduced a novel automated diagnostic tool based on ECG data to diagnose COVID-19. The introduced tool utilizes ten deep learning (DL) models of various architectures. It obtains significant features from the last fully connected layer of each DL model and then combines them. Afterward, the tool presents a hybrid feature selection based on the chi-square test and sequential search to select significant features. Finally, it employs several machine learning classifiers to perform two classification levels. A binary level to differentiate between normal and COVID-19 cases, and a multiclass to discriminate COVID-19 cases from normal and other cardiac complications. The proposed tool reached an accuracy of 98.2% and 91.6% for binary and multiclass levels, respectively. This performance indicates that the ECG could be used as an alternative means of diagnosis of COVID-19.
Collapse
Affiliation(s)
- Omneya Attallah
- Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt
| |
Collapse
|
18
|
Attallah O. ECG-BiCoNet: An ECG-based pipeline for COVID-19 diagnosis using Bi-Layers of deep features integration. Comput Biol Med 2022; 142:105210. [PMID: 35026574 PMCID: PMC8730786 DOI: 10.1016/j.compbiomed.2022.105210] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/01/2022] [Accepted: 01/01/2022] [Indexed: 12/29/2022]
Abstract
The accurate and speedy detection of COVID-19 is essential to avert the fast propagation of the virus, alleviate lockdown constraints and diminish the burden on health organizations. Currently, the methods used to diagnose COVID-19 have several limitations, thus new techniques need to be investigated to improve the diagnosis and overcome these limitations. Taking into consideration the great benefits of electrocardiogram (ECG) applications, this paper proposes a new pipeline called ECG-BiCoNet to investigate the potential of using ECG data for diagnosing COVID-19. ECG-BiCoNet employs five deep learning models of distinct structural design. ECG-BiCoNet extracts two levels of features from two different layers of each deep learning technique. Features mined from higher layers are fused using discrete wavelet transform and then integrated with lower-layers features. Afterward, a feature selection approach is utilized. Finally, an ensemble classification system is built to merge predictions of three machine learning classifiers. ECG-BiCoNet accomplishes two classification categories, binary and multiclass. The results of ECG-BiCoNet present a promising COVID-19 performance with an accuracy of 98.8% and 91.73% for binary and multiclass classification categories. These results verify that ECG data may be used to diagnose COVID-19 which can help clinicians in the automatic diagnosis and overcome limitations of manual diagnosis.
Collapse
Affiliation(s)
- Omneya Attallah
- Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, 1029, Egypt.
| |
Collapse
|
19
|
Attallah O. A computer-aided diagnostic framework for coronavirus diagnosis using texture-based radiomics images. Digit Health 2022; 8:20552076221092543. [PMID: 35433024 PMCID: PMC9005822 DOI: 10.1177/20552076221092543] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The accurate and rapid detection of the novel coronavirus infection, coronavirus is very important to prevent the fast spread of such disease. Thus, reducing negative effects that influenced many industrial sectors, especially healthcare. Artificial intelligence techniques in particular deep learning could help in the fast and precise diagnosis of coronavirus from computed tomography images. Most artificial intelligence-based studies used the original computed tomography images to build their models; however, the integration of texture-based radiomics images and deep learning techniques could improve the diagnostic accuracy of the novel coronavirus diseases. This study proposes a computer-assisted diagnostic framework based on multiple deep learning and texture-based radiomics approaches. It first trains three Residual Networks (ResNets) deep learning techniques with two texture-based radiomics images including discrete wavelet transform and gray-level covariance matrix instead of the original computed tomography images. Then, it fuses the texture-based radiomics deep features sets extracted from each using discrete cosine transform. Thereafter, it further combines the fused texture-based radiomics deep features obtained from the three convolutional neural networks. Finally, three support vector machine classifiers are utilized for the classification procedure. The proposed method is validated experimentally on the benchmark severe respiratory syndrome coronavirus 2 computed tomography image dataset. The accuracies attained indicate that using texture-based radiomics (gray-level covariance matrix, discrete wavelet transform) images for training the ResNet-18 (83.22%, 74.9%), ResNet-50 (80.94%, 78.39%), and ResNet-101 (80.54%, 77.99%) is better than using the original computed tomography images (70.34%, 76.51%, and 73.42%) for ResNet-18, ResNet-50, and ResNet-101, respectively. Furthermore, the sensitivity, specificity, accuracy, precision, and F1-score achieved using the proposed computer-assisted diagnostic after the two fusion steps are 99.47%, 99.72%, 99.60%, 99.72%, and 99.60% which proves that combining texture-based radiomics deep features obtained from the three ResNets has boosted its performance. Thus, fusing multiple texture-based radiomics deep features mined from several convolutional neural networks is better than using only one type of radiomics approach and a single convolutional neural network. The performance of the proposed computer-assisted diagnostic framework allows it to be used by radiologists in attaining fast and accurate diagnosis.
Collapse
Affiliation(s)
- Omneya Attallah
- Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| |
Collapse
|
20
|
Attallah O. A deep learning-based diagnostic tool for identifying various diseases via facial images. Digit Health 2022; 8:20552076221124432. [PMID: 36105626 PMCID: PMC9465585 DOI: 10.1177/20552076221124432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
With the current health crisis caused by the COVID-19 pandemic, patients have
become more anxious about infection, so they prefer not to have direct contact
with doctors or clinicians. Lately, medical scientists have confirmed that
several diseases exhibit corresponding specific features on the face the face.
Recent studies have indicated that computer-aided facial diagnosis can be a
promising tool for the automatic diagnosis and screening of diseases from facial
images. However, few of these studies used deep learning (DL) techniques. Most
of them focused on detecting a single disease, using handcrafted feature
extraction methods and conventional machine learning techniques based on
individual classifiers trained on small and private datasets using images taken
from a controlled environment. This study proposes a novel computer-aided facial
diagnosis system called FaceDisNet that uses a new public dataset based on
images taken from an unconstrained environment and could be employed for
forthcoming comparisons. It detects single and multiple diseases. FaceDisNet is
constructed by integrating several spatial deep features from convolutional
neural networks of various architectures. It does not depend only on spatial
features but also extracts spatial-spectral features. FaceDisNet searches for
the fused spatial-spectral feature set that has the greatest impact on the
classification. It employs two feature selection techniques to reduce the large
dimension of features resulting from feature fusion. Finally, it builds an
ensemble classifier based on stacking to perform classification. The performance
of FaceDisNet verifies its ability to diagnose single and multiple diseases.
FaceDisNet achieved a maximum accuracy of 98.57% and 98% after the ensemble
classification and feature selection steps for binary and multiclass
classification categories. These results prove that FaceDisNet is a reliable
tool and could be employed to avoid the difficulties and complications of manual
diagnosis. Also, it can help physicians achieve accurate diagnoses without the
need for physical contact with the patients.
Collapse
Affiliation(s)
- Omneya Attallah
- Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| |
Collapse
|
21
|
Attallah O. DIAROP: Automated Deep Learning-Based Diagnostic Tool for Retinopathy of Prematurity. Diagnostics (Basel) 2021; 11:2034. [PMID: 34829380 PMCID: PMC8620568 DOI: 10.3390/diagnostics11112034] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/24/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Retinopathy of Prematurity (ROP) affects preterm neonates and could cause blindness. Deep Learning (DL) can assist ophthalmologists in the diagnosis of ROP. This paper proposes an automated and reliable diagnostic tool based on DL techniques called DIAROP to support the ophthalmologic diagnosis of ROP. It extracts significant features by first obtaining spatial features from the four Convolution Neural Networks (CNNs) DL techniques using transfer learning and then applying Fast Walsh Hadamard Transform (FWHT) to integrate these features. Moreover, DIAROP explores the best-integrated features extracted from the CNNs that influence its diagnostic capability. The results of DIAROP indicate that DIAROP achieved an accuracy of 93.2% and an area under receiving operating characteristic curve (AUC) of 0.98. Furthermore, DIAROP performance is compared with recent ROP diagnostic tools. Its promising performance shows that DIAROP may assist the ophthalmologic diagnosis of ROP.
Collapse
Affiliation(s)
- Omneya Attallah
- Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt
| |
Collapse
|
22
|
Intelligent Dermatologist Tool for Classifying Multiple Skin Cancer Subtypes by Incorporating Manifold Radiomics Features Categories. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:7192016. [PMID: 34621146 PMCID: PMC8457955 DOI: 10.1155/2021/7192016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023]
Abstract
The rates of skin cancer (SC) are rising every year and becoming a critical health issue worldwide. SC's early and accurate diagnosis is the key procedure to reduce these rates and improve survivability. However, the manual diagnosis is exhausting, complicated, expensive, prone to diagnostic error, and highly dependent on the dermatologist's experience and abilities. Thus, there is a vital need to create automated dermatologist tools that are capable of accurately classifying SC subclasses. Recently, artificial intelligence (AI) techniques including machine learning (ML) and deep learning (DL) have verified the success of computer-assisted dermatologist tools in the automatic diagnosis and detection of SC diseases. Previous AI-based dermatologist tools are based on features which are either high-level features based on DL methods or low-level features based on handcrafted operations. Most of them were constructed for binary classification of SC. This study proposes an intelligent dermatologist tool to accurately diagnose multiple skin lesions automatically. This tool incorporates manifold radiomics features categories involving high-level features such as ResNet-50, DenseNet-201, and DarkNet-53 and low-level features including discrete wavelet transform (DWT) and local binary pattern (LBP). The results of the proposed intelligent tool prove that merging manifold features of different categories has a high influence on the classification accuracy. Moreover, these results are superior to those obtained by other related AI-based dermatologist tools. Therefore, the proposed intelligent tool can be used by dermatologists to help them in the accurate diagnosis of the SC subcategory. It can also overcome manual diagnosis limitations, reduce the rates of infection, and enhance survival rates.
Collapse
|