1
|
Che Alias MA, Zakaria MH, Ramaiya SD, Esa Y, Ab. Ghani NI, Bujang JS. Morphological and genetic identification of Halophila species and a new distribution record of Halophila nipponica at the Tanjung Adang Laut shoal, Johor, Malaysia. PLoS One 2024; 19:e0309143. [PMID: 39361582 PMCID: PMC11449352 DOI: 10.1371/journal.pone.0309143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
The Halophila species exhibit complex characteristics due to their high degree of variation across different bioregions. This study delves into the intricate characteristics of Halophila species in the Tanjung Adang Laut shoal, Johor, Malaysia, and offers valuable insights through morphological and genetic evidence. Employing internal transcribed sequences (ITS), we investigated the phylogeny of Halophila species, revealing distinct clades for H. ovalis, H. major, H. spinulosa, and the newly recorded H. nipponica. Notably, H. nipponica from the Tanjung Adang Laut shoal formed a conspecific relationship with its counterparts from Japan and Korea (98.3-98.5% similarity; 5-11 bp differences). Morphologically, distinguishing features, including the ratio of the half-lamina width (1:4.76-6.13 mm) and cross-vein count (4-7 pairs), supported the identification of H. nipponica. Genetic distance analyses revealed differences between H. nipponica, H. ovalis, and H. major, indicating haplotype diversity. Geographical variations were evident, as H. nipponica presented unique haplotypes (H24) in its clade. The 47 haplotypes network identified significant mutation sites, providing a comprehensive understanding of genetic and morphological distinctions. In conclusion, this study highlights the intricate characteristics and phylogeny of Halophila species in the Tanjung Adang Laut shoal, Johor, and provides valuable insights into their genetic and morphological diversity.
Collapse
Affiliation(s)
- Muhammad Afif Che Alias
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Muta Harah Zakaria
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, UPM, Serdang, Selangor Darul Ehsan, Malaysia
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - Shiamala Devi Ramaiya
- Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, Bintulu, Malaysia
| | - Yuzine Esa
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Nurul Izza Ab. Ghani
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Japar Sidik Bujang
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
2
|
Chebaro Z, Mesmar JE, Badran A, Al-Sawalmih A, Maresca M, Baydoun E. Halophila stipulacea: A Comprehensive Review of Its Phytochemical Composition and Pharmacological Activities. Biomolecules 2024; 14:991. [PMID: 39199379 PMCID: PMC11353240 DOI: 10.3390/biom14080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
Halophila stipulacea (Forsskål and Niebuhr) Ascherson is a small marine seagrass that belongs to the Hydrocharitaceae family. It is native to the Red Sea, Persian Gulf, and Indian Ocean and has successfully invaded the Mediterranean and Caribbean Seas. This article summarizes the pharmacological activities and phytochemical content of H. stipulacea, along with its botanical and ecological characteristics. Studies have shown that H. stipulacea is rich in polyphenols and terpenoids. Additionally, it is rich in proteins, lipids, and carbohydrates, contributing to its nutritional value. Several biological activities are reported by this plant, including antimicrobial, antioxidant, anticancer, anti-inflammatory, anti-metabolic disorders, and anti-osteoclastogenic activities. Further research is needed to validate the efficacy and safety of this plant and to investigate the mechanisms of action underlying the observed effects.
Collapse
Affiliation(s)
- Ziad Chebaro
- Department of Biology, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (Z.C.); (J.E.M.)
| | - Joelle Edward Mesmar
- Department of Biology, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (Z.C.); (J.E.M.)
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman 11196, Jordan;
| | - Ali Al-Sawalmih
- Marine Science Station, University of Jordan, Aqaba 11942, Jordan;
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, 13013 Marseille, France
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (Z.C.); (J.E.M.)
| |
Collapse
|
3
|
Nguyen XV, Phan TTH, Cao VL, Nguyen Nhat NT, Nguyen TH, Nguyen XT, Lau VK, Hoang CT, Nguyen-Thi MN, Nguyen HM, Dao VH, Teichberg M, Papenbrock J. Current advances in seagrass research: A review from Viet Nam. FRONTIERS IN PLANT SCIENCE 2022; 13:991865. [PMID: 36299785 PMCID: PMC9589349 DOI: 10.3389/fpls.2022.991865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Seagrass meadows provide valuable ecosystem services but are fragile and threatened ecosystems all over the world. This review highlights the current advances in seagrass research from Viet Nam. One goal is to support decision makers in developing science-based conservation strategies. In recent years, several techniques were applied to estimate the size of seagrass meadows. Independent from the method used, there is an alarming decline in the seagrass area in almost all parts of Viet Nam. Since 1990, a decline of 46.5% or 13,549 ha was found. Only in a few protected and difficult-to-reach areas was an increase observed. Conditions at those sites could be investigated in more detail to make suggestions for conservation and recovery of seagrass meadows. Due to their lifestyle and morphology, seagrasses take up compounds from their environment easily. Phytoremediation processes of Thalassia hemprichii and Enhalus acoroides are described exemplarily. High accumulation of heavy metals dependent on their concentration in the environment in different organs can be observed. On the one hand, seagrasses play a role in phytoremediation processes in polluted areas; on the other hand, they might suffer at high concentrations, and pollution will contribute to their overall decline. Compared with the neighboring countries, the total C org stock from seagrass beds in Viet Nam was much lower than in the Philippines and Indonesia but higher than that of Malaysia and Myanmar. Due to an exceptionally long latitudinal coastline of 3,260 km covering cool to warm water environments, the seagrass species composition in Viet Nam shows a high diversity and a high plasticity within species boundaries. This leads to challenges in taxonomic issues, especially with the Halophila genus, which can be better deduced from genetic diversity/population structures of members of Hydrocharitaceae. Finally, the current seagrass conservation and management efforts in Viet Nam are presented and discussed. Only decisions based on the interdisciplinary cooperation of scientists from all disciplines mentioned will finally lead to conserve this valuable ecosystem for mankind and biodiversity.
Collapse
Affiliation(s)
- Xuan-Vy Nguyen
- Institute of Oceanography, Viet Nam Academy of Science and Technology, Nha Trang, Vietnam
- Faculty of Marine Science and Technology, Graduate University of Science and Technology, Ha Noi, Vietnam
| | | | - Van-Luong Cao
- Faculty of Marine Science and Technology, Graduate University of Science and Technology, Ha Noi, Vietnam
- Institute of Marine Environment and Resources, Viet Nam Academy of Science and Technology, Hai Phong, Vietnam
| | - Nhu-Thuy Nguyen Nhat
- Institute of Oceanography, Viet Nam Academy of Science and Technology, Nha Trang, Vietnam
| | - Trung-Hieu Nguyen
- Institute of Oceanography, Viet Nam Academy of Science and Technology, Nha Trang, Vietnam
| | - Xuan-Thuy Nguyen
- Institute of Oceanography, Viet Nam Academy of Science and Technology, Nha Trang, Vietnam
| | - Va-Khin Lau
- Institute of Oceanography, Viet Nam Academy of Science and Technology, Nha Trang, Vietnam
| | | | - My-Ngan Nguyen-Thi
- Institute of Oceanography, Viet Nam Academy of Science and Technology, Nha Trang, Vietnam
| | - Hung Manh Nguyen
- Dead Sea and Arava Science Center, Central Arava Branch, Hatseva, Israel
- French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Viet-Ha Dao
- Institute of Oceanography, Viet Nam Academy of Science and Technology, Nha Trang, Vietnam
- Faculty of Marine Science and Technology, Graduate University of Science and Technology, Ha Noi, Vietnam
| | - Mirta Teichberg
- Ecosystems Center, Marine Biological Laboratory (MBL), Woodshole, MA, United States
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
4
|
Edgeloe JM, Severn-Ellis AA, Bayer PE, Mehravi S, Breed MF, Krauss SL, Batley J, Kendrick GA, Sinclair EA. Extensive polyploid clonality was a successful strategy for seagrass to expand into a newly submerged environment. Proc Biol Sci 2022; 289:20220538. [PMID: 35642363 PMCID: PMC9156900 DOI: 10.1098/rspb.2022.0538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Polyploidy has the potential to allow organisms to outcompete their diploid progenitor(s) and occupy new environments. Shark Bay, Western Australia, is a World Heritage Area dominated by temperate seagrass meadows including Poseidon's ribbon weed, Posidonia australis. This seagrass is at the northern extent of its natural geographic range and experiences extremes in temperature and salinity. Our genomic and cytogenetic assessments of 10 meadows identified geographically restricted, diploid clones (2n = 20) in a single location, and a single widespread, high-heterozygosity, polyploid clone (2n = 40) in all other locations. The polyploid clone spanned at least 180 km, making it the largest known example of a clone in any environment on earth. Whole-genome duplication through polyploidy, combined with clonality, may have provided the mechanism for P. australis to expand into new habitats and adapt to new environments that became increasingly stressful for its diploid progenitor(s). The new polyploid clone probably formed in shallow waters after the inundation of Shark Bay less than 8500 years ago and subsequently expanded via vegetative growth into newly submerged habitats.
Collapse
Affiliation(s)
- Jane M. Edgeloe
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia,Oceans Institute, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Anita A. Severn-Ellis
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Philipp E. Bayer
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Shaghayegh Mehravi
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Martin F. Breed
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Siegfried L. Krauss
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia,Kings Park Science, Department of Biodiversity Conservation and Attractions, 1 Kattidj Close, West Perth, Western Australia 6005, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Gary A. Kendrick
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia,Oceans Institute, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Elizabeth A. Sinclair
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia,Oceans Institute, University of Western Australia, Crawley, Western Australia, 6009, Australia,Kings Park Science, Department of Biodiversity Conservation and Attractions, 1 Kattidj Close, West Perth, Western Australia 6005, Australia
| |
Collapse
|
5
|
ITS DNA Barcoding Reveals That Halophila stipulacea Still Remains the Only Non-Indigenous Seagrass of the Mediterranean Sea. DIVERSITY 2022. [DOI: 10.3390/d14020076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Non-indigenous species (NIS) are one of the major threats to the native marine ecosystems of the Mediterranean Sea. Halophila stipulacea was the only exotic seagrass of the Mediterranean until 2018, when small patches of a species morphologically identified as Halophila decipiens were reported in Salamina Island, Greece. Given the absence of reproductive structures during the identification and the taxonomic ambiguities known to lead to misidentifications on this genus, we reassessed the identity of this new exotic record using DNA barcoding (rbcL, matK and ITS) and the recently published taxonomic key. Despite their morphologic similarity to H. decipiens based on the new taxonomic key, the specimens showed no nucleotide differences with H. stipulacea specimens (Crete) for the three barcodes and clustered together on the ITS phylogenetic tree. Considering the high species resolution of the ITS region and the common morphological variability within the genus, the unequivocal genetic result suggests that the Halophila population found in Salamina Island most likely corresponds to a morphologically variant H. stipulacea. Our results highlight the importance of applying an integrated taxonomic approach (morphological and molecular) to taxonomically complex genera such as Halophila, in order to avoid overlooking or misreporting species range shifts, which is essential for monitoring NIS introductions.
Collapse
|
6
|
Nguyen XV, Nguyen-Nhat NT, Nguyen XT, Dao VH, M. Liao L, Papenbrock J. Analysis of rDNA reveals a high genetic diversity of Halophila major in the Wallacea region. PLoS One 2021; 16:e0258956. [PMID: 34679102 PMCID: PMC8535426 DOI: 10.1371/journal.pone.0258956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
The genus Halophila shows the highest species diversity within the seagrass genera. Southeast Asian countries where several boundary lines exist were considered as the origin of seagrasses. We hypothesize that the boundary lines, such as Wallace's and Lydekker's Lines, may act as marine geographic barriers to the population structure of Halophila major. Seagrass samples were collected at three islands in Vietnamese waters and analyzed by the molecular maker ITS. These sequences were compared with published ITS sequences from seagrasses collected in the whole region of interest. In this study, we reveal the haplotype and nucleotide diversity, linking population genetics, phylogeography, phylogenetics and estimation of relative divergence times of H. major and other members of the Halophila genus. The morphological characters show variation. The results of the ITS marker analysis reveal smaller groups of H. major from Myanmar, Shoalwater Bay (Australia) and Okinawa (Japan) with high supporting values. The remaining groups including Sri Lanka, Viet Nam, the Philippines, Thailand, Malaysia, Indonesia, Two Peoples Bay (Australia) and Tokushima (Japan) showed low supporting values. The Wallacea region shows the highest haplotype and also nucleotide diversity. Non-significant differences were found among regions, but significant differences were presented among populations. The relative divergence times between some members of section Halophila were estimated 2.15-6.64 Mya.
Collapse
Affiliation(s)
- Xuan-Vy Nguyen
- Department of Marine Botany, Institute of Oceanography, Vietnam Academy of Science and Technology, Nha Trang, Viet Nam
- Faculty of Marine Science and Technology, Graduate University of Science and Technology, Cau Giay, Ha Noi, Viet Nam
| | - Nhu-Thuy Nguyen-Nhat
- Department of Marine Botany, Institute of Oceanography, Vietnam Academy of Science and Technology, Nha Trang, Viet Nam
| | - Xuan-Thuy Nguyen
- Department of Marine Botany, Institute of Oceanography, Vietnam Academy of Science and Technology, Nha Trang, Viet Nam
| | - Viet-Ha Dao
- Department of Marine Botany, Institute of Oceanography, Vietnam Academy of Science and Technology, Nha Trang, Viet Nam
- Faculty of Marine Science and Technology, Graduate University of Science and Technology, Cau Giay, Ha Noi, Viet Nam
| | - Lawrence M. Liao
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
7
|
The Genetic Component of Seagrass Restoration: What We Know and the Way Forwards. WATER 2021. [DOI: 10.3390/w13060829] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Seagrasses are marine flowering plants providing key ecological services and functions in coasts and estuaries across the globe. Increased environmental changes fueled by human activities are affecting their existence, compromising natural habitats and ecosystems’ biodiversity and functioning. In this context, restoration of disturbed seagrass environments has become a worldwide priority to reverse ecosystem degradation and to recover ecosystem functionality and associated services. Despite the proven importance of genetic research to perform successful restoration projects, this aspect has often been overlooked in seagrass restoration. Here, we aimed to provide a comprehensive perspective of genetic aspects related to seagrass restoration. To this end, we first reviewed the importance of studying the genetic diversity and population structure of target seagrass populations; then, we discussed the pros and cons of different approaches used to restore and/or reinforce degraded populations. In general, the collection of genetic information and the development of connectivity maps are critical steps for any seagrass restoration activity. Traditionally, the selection of donor population preferred the use of local gene pools, thought to be the best adapted to current conditions. However, in the face of rapid ocean changes, alternative approaches such as the use of climate-adjusted or admixture genotypes might provide more sustainable options to secure the survival of restored meadows. Also, we discussed different transplantation strategies applied in seagrasses and emphasized the importance of long-term seagrass monitoring in restoration. The newly developed information on epigenetics as well as the application of assisted evolution strategies were also explored. Finally, a view of legal and ethical issues related to national and international restoration management is included, highlighting improvements and potential new directions to integrate with the genetic assessment. We concluded that a good restoration effort should incorporate: (1) a good understanding of the genetic structure of both donors and populations being restored; (2) the analysis of local environmental conditions and disturbances that affect the site to be restored; (3) the analysis of local adaptation constraints influencing the performances of donor populations and native plants; (4) the integration of distribution/connectivity maps with genetic information and environmental factors relative to the target seagrass populations; (5) the planning of long-term monitoring programs to assess the performance of the restored populations. The inclusion of epigenetic knowledge and the development of assisted evolution programs are strongly hoped for the future.
Collapse
|
8
|
Taxonomy of the Genus Halophila Thouars (Hydocharitaceae): A Review. PLANTS 2020; 9:plants9121732. [PMID: 33302504 PMCID: PMC7763217 DOI: 10.3390/plants9121732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022]
Abstract
The seagrass genus Halophila Thouars has more than twenty described species and is predominately distributed over a wide geographic range along the tropical and the warm temperate coastlines in the Indo-West Pacific Oceans. A brief history of the Halophila taxonomic development is presented. Based on reproductive and vegetative morphology, the genus is divided into eight sections including three new sections: section Australes, section Stipulaceae and section Decipientes. A rewritten taxonomic description of the type species for the genus Halophila,H. madagascariensis Steudel ex Doty et B.C. Stone, is provided. The lectotype of H. engelmannii Asch. as well as neotypes of H. hawaiiana Doty et B.C. Stone and H. spinulosa (Br.) Asch. are designated. Furthermore, H. ovalis ssp. bullosa, ssp. ramamurthiana and ssp. linearis together with H. balforurii have been recognised as distinct species. Nomenclature, typification, morphological description and botanical illustrations are presented for each taxon. Recent molecular phylogenetic surveys on certain Halophila taxa are also discussed. Field surveys for the deep water Halophila in West Pacific regions are suggested. Morphological studies combined with molecular investigations for the Halophila on the east coast of Africa and the West Indian Ocean are urgently needed and highly recommended.
Collapse
|