1
|
Mohd Hanafiah Z, Wan Mohtar WHM, Wan-Mohtar WAAQI, Bithi AS, Rohani R, Indarto A, Yaseen ZM, Sharil S, Binti Abdul Manan TS. Removal of pharmaceutical compounds and toxicology study in wastewater using Malaysian fungal Ganoderma lucidum. CHEMOSPHERE 2024; 358:142209. [PMID: 38697564 DOI: 10.1016/j.chemosphere.2024.142209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Elevated usage of pharmaceutical products leads to the accumulation of emerging contaminants in sewage. In the current work, Ganoderma lucidum (GL) was used to remove pharmaceutical compounds (PCs), proposed as a tertiary method in sewage treatment plants (STPs). The PCs consisted of a group of painkillers (ketoprofen, diclofenac, and dexamethasone), psychiatrists (carbamazepine, venlafaxine, and citalopram), beta-blockers (atenolol, metoprolol, and propranolol), and anti-hypertensives (losartan and valsartan). The performance of 800 mL of synthetic water, effluent STP, and hospital wastewater (HWW) was evaluated. Parameters, including treatment time, inoculum volume, and mechanical agitation speed, have been tested. The toxicity of the GL after treatment is being studied based on exposure levels to zebrafish embryos (ZFET) and the morphology of the GL has been observed via Field Emission Scanning Electron Microscopy (FESEM). The findings conclude that GL can reduce PCs from <10% to >90%. Diclofenac and valsartan are the highest (>90%) in the synthetic model, while citalopram and propranolol (>80%) are in the real wastewater. GL effectively removed pollutants in 48 h, 1% of the inoculum volume, and 50 rpm. The ZFET showed GL is non-toxic (LC50 is 209.95 mg/mL). In the morphology observation, pellets GL do not show major differences after treatment, showing potential to be used for a longer treatment time and to be re-useable in the system. GL offers advantages to removing PCs in water due to their non-specific extracellular enzymes that allow for the biodegradation of PCs and indicates a good potential in real-world applications as a favourable alternative treatment.
Collapse
Affiliation(s)
- Zarimah Mohd Hanafiah
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia; Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wan Hanna Melini Wan Mohtar
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia; Environmental Management Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia.
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Aziza Sultana Bithi
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Rosiah Rohani
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Antonius Indarto
- Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Suraya Sharil
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Teh Sabariah Binti Abdul Manan
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
2
|
Lente V, Staszny Á, Hegedűs A, Weiperth A, Bányai ZM, Urbányi B, Ferincz Á. Growth of two invasive cichlids (Perciformes: Cichlidae) in a natural thermal water habitat of temperate Central Europe (Lake Hévíz, Hungary). Biol Futur 2024; 75:235-242. [PMID: 38386190 DOI: 10.1007/s42977-024-00208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024]
Abstract
The outflow of the natural thermal Lake of Hévíz is habitat of several fish species, with conservation relevance. In the past few years, numerous thermophile (tropically originated) fishes were reported in this waterbody, from which two species Parachromis managuensis (Günther, 1867), Vieja melanurus (Günther, 1862) characterized with strong, self-sustaining population. The aim of our research was to provide basic population data and to study their individual growth. The standard length of jaguar cichlid ranged from 37 to 283 mm (mean SL = 110.21 ± 65.4 mm), the redhead cichlid standard length varied between 30 and 203 mm (mean SL = 93.91 ± 40.0 mm). Slightly positive allometry (b > 3) was found in the case of both species. The von Bertalanffy Growth Function can be described as the following Lt = 343.6[1 - e-0.196(t+0.973)] in jaguar cichlid and Lt = 298.9[1 - e-0.113(t+0.997)] in the case of redhead cichlid. The Bertalanffy growth equations show slow growth for both species. Fulton's condition factor (K) values varied between 1.376 and 2.11 (mean K = 1.701 ± 0.17) in the case of jaguar cichlid, and between 1.391 and 3.033 (mean K = 2.237 ± 0.24) for redhead cichlid. These baseline population biology data from the first known self-sustaining, temperate-zone populations of two tropical cichlids provide information e.g., for future ecological risk assessments or comparative growth analyzes.
Collapse
Affiliation(s)
- Vera Lente
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Páter K.Str. 1, 2100, Hungary
| | - Ádám Staszny
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Páter K.Str. 1, 2100, Hungary
| | - Anna Hegedűs
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Páter K.Str. 1, 2100, Hungary
| | - András Weiperth
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Páter K.Str. 1, 2100, Hungary
| | - Zsombor M Bányai
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Páter K.Str. 1, 2100, Hungary
| | - Béla Urbányi
- Department of Aquaculture, Hungarian University of Agriculture and Life Sciences, Gödöllő, Páter K. Str. 1, 2100, Hungary
| | - Árpád Ferincz
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Páter K.Str. 1, 2100, Hungary.
| |
Collapse
|
3
|
Traverso F, Aicardi S, Bozzo M, Zinni M, Amaroli A, Galli L, Candiani S, Vanin S, Ferrando S. New Insights into Geometric Morphometry Applied to Fish Scales for Species Identification. Animals (Basel) 2024; 14:1090. [PMID: 38612329 PMCID: PMC11010809 DOI: 10.3390/ani14071090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
The possibility of quick and cheap recognition of a fish species from a single dermal scale would be interesting in a wide range of contexts. The methods of geometric morphometry appear to be quite promising, although wide studies comparing different approaches are lacking. We aimed to apply two methods of geometric morphometry, landmark-based and outline-based, on a dataset of scales from five different teleost species: Danio rerio, Dicentrarchus labrax, Mullus surmuletus, Sardina pilchardus, and Sparus aurata. For the landmark-based method the R library "geomorph" was used. Some issues about landmark selection and positioning were addressed and, for the first time on fish scales, an approach with both landmarks and semilandmarks was set up. For the outline-based method the R library "Momocs" was used. Despite the relatively low number of scales analyzed (from 11 to 81 for each species), both methods achieved quite good clustering of all the species. In particular, the landmark-based method used here gave generally higher R2 values in testing species clustering than the outline-based method, but it failed to distinguish between a few couples of species; on the other hand, the outline-based method seemed to catch the differences among all the couples except one. Larger datasets have the potential to achieve better results with outline-based geometric morphometry. This latter method, being free from the problem of recognizing and positioning landmarks, is also the most suitable for being automatized in future applications.
Collapse
Affiliation(s)
- Francesca Traverso
- Department of Earth, Environmental, and Life Sciences, University of Genoa, Corso Europa, 26, 16132 Genoa, Italy
| | - Stefano Aicardi
- Department of Earth, Environmental, and Life Sciences, University of Genoa, Corso Europa, 26, 16132 Genoa, Italy
| | - Matteo Bozzo
- Department of Earth, Environmental, and Life Sciences, University of Genoa, Corso Europa, 26, 16132 Genoa, Italy
| | - Matteo Zinni
- Department of Earth, Environmental, and Life Sciences, University of Genoa, Corso Europa, 26, 16132 Genoa, Italy
| | - Andrea Amaroli
- Department of Earth, Environmental, and Life Sciences, University of Genoa, Corso Europa, 26, 16132 Genoa, Italy
| | - Loris Galli
- Department of Earth, Environmental, and Life Sciences, University of Genoa, Corso Europa, 26, 16132 Genoa, Italy
| | - Simona Candiani
- Department of Earth, Environmental, and Life Sciences, University of Genoa, Corso Europa, 26, 16132 Genoa, Italy
| | - Stefano Vanin
- Department of Earth, Environmental, and Life Sciences, University of Genoa, Corso Europa, 26, 16132 Genoa, Italy
| | - Sara Ferrando
- Department of Earth, Environmental, and Life Sciences, University of Genoa, Corso Europa, 26, 16132 Genoa, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina, 61, 90133 Palermo, Italy
| |
Collapse
|
4
|
Ács A, Liang X, Bock I, Griffitts J, Ivánovics B, Vásárhelyi E, Ferincz Á, Pirger Z, Urbányi B, Csenki Z. Chronic Effects of Carbamazepine, Progesterone and Their Mixtures at Environmentally Relevant Concentrations on Biochemical Markers of Zebrafish (Danio rerio). Antioxidants (Basel) 2022; 11:antiox11091776. [PMID: 36139850 PMCID: PMC9495832 DOI: 10.3390/antiox11091776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
The impact of pharmaceuticals on non-target organisms in the environment is of increasing concern and study. Pharmaceuticals and other pollutants are often present as mixtures in an environmental compartment. Studies on the toxicological implications of these drugs on fish, particularly as mixtures at environmentally relevant concentrations, are very limited. Thus, this study aimed to evaluate the chronic effects of the anticonvulsant drug carbamazepine (CBZ) and progesterone (P4) at environmentally relevant concentrations, individually and in binary mixtures, applying a suite of biomarkers at the molecular level in zebrafish (Danio rerio). The effects on biotransformation enzymes 7-ethoxyresorufin O-deethylase (EROD) and glutathione-S-transferase (GST), antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione peroxidases (GPxSe and GPxTOT), and glutathione reductase (GR), and markers of damage, such as DNA strand breaks (DNAsb), lactate dehydrogenase (LDH), lipid peroxidation (LPO), and vitellogenin-like proteins (VTG), were evaluated. Analyses of the biochemical markers indicated that a synergistic dose-ratio-dependent effect of CBZ and P4 in zebrafish occurs after chronic exposure regarding VTG, biotransformation enzymes (EROD, GST), and oxidative stress marker (DNAsb). The results suggest a synergistic effect regarding VTG, thus indicating a high risk to the reproductive success of fish if these pharmaceuticals co-occur.
Collapse
Affiliation(s)
- András Ács
- Department of Freshwater Fish Ecology, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3, H-8237 Tihany, Hungary
| | - Xinyue Liang
- Department of Freshwater Fish Ecology, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary
| | - Illés Bock
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary
| | - Jeffrey Griffitts
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary
| | - Bence Ivánovics
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary
| | - Erna Vásárhelyi
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary
| | - Árpád Ferincz
- Department of Freshwater Fish Ecology, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary
| | - Zsolt Pirger
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3, H-8237 Tihany, Hungary
| | - Béla Urbányi
- Department of Aquaculture, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary
- Correspondence:
| | - Zsolt Csenki
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary
| |
Collapse
|
5
|
Liang X, Csenki Z, Ivánovics B, Bock I, Csorbai B, Molnár J, Vásárhelyi E, Griffitts J, Ferincz Á, Urbányi B, Ács A. Biochemical Marker Assessment of Chronic Carbamazepine Exposure at Environmentally Relevant Concentrations in Juvenile Common Carp ( Cyprinus carpio). Antioxidants (Basel) 2022; 11:antiox11061136. [PMID: 35740033 PMCID: PMC9219654 DOI: 10.3390/antiox11061136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Worldwide, the anticonvulsant drug carbamazepine (CBZ) is the most frequently identified pharmaceutical residue detected in rivers. Reported chronic effects of CBZ in non-target freshwater organisms, particularly fish, include oxidative stress and damage to liver tissues. Studies on CBZ effects in fish are mostly limited to zebrafish and rainbow trout studies. Furthermore, there are only a few chronic CBZ studies using near environmental concentrations. In this study, we provide data on subacute effects of CBZ exposure (28 days) to common carp (Cyprinus carpio), employing a set of biochemical markers of damage and exposure. CBZ was found to induce a significant change in the hepatic antioxidant status of fish subjected to 5 µg/L. Moreover, with increasing concentrations, enzymatic and non-enzymatic biomarkers of oxidative defence (catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), DNA strand breaks)), toxicant biotransformation (ethoxyresorufin-o-demethylase (EROD), glutathione-S-transferase (GST)), and organ and tissue damage (lactate dehydrogenase (LDH), cetylcholinesterase (AChE)) were altered. The AChE, LDH, and lipid peroxidation (LPO) results indicate the occurrence of apoptotic process activation and tissue damage after 28 days of exposure to CBZ. These findings suggest significant adverse effects of CBZ exposure to common carp at concentrations often found in surface waters.
Collapse
Affiliation(s)
- Xinyue Liang
- Department of Freshwater Fish Ecology, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary; (X.L.); (Á.F.)
| | - Zsolt Csenki
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary; (Z.C.); (B.I.); (I.B.); (E.V.); (J.G.)
| | - Bence Ivánovics
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary; (Z.C.); (B.I.); (I.B.); (E.V.); (J.G.)
| | - Illés Bock
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary; (Z.C.); (B.I.); (I.B.); (E.V.); (J.G.)
| | - Balázs Csorbai
- Department of Aquaculture, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary; (B.C.); (J.M.); (B.U.)
| | - József Molnár
- Department of Aquaculture, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary; (B.C.); (J.M.); (B.U.)
| | - Erna Vásárhelyi
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary; (Z.C.); (B.I.); (I.B.); (E.V.); (J.G.)
| | - Jeffrey Griffitts
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary; (Z.C.); (B.I.); (I.B.); (E.V.); (J.G.)
| | - Árpád Ferincz
- Department of Freshwater Fish Ecology, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary; (X.L.); (Á.F.)
| | - Béla Urbányi
- Department of Aquaculture, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary; (B.C.); (J.M.); (B.U.)
| | - András Ács
- Department of Freshwater Fish Ecology, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary; (X.L.); (Á.F.)
- Correspondence:
| |
Collapse
|
6
|
Rebelo P, Pacheco JG, Voroshylova IV, Seguro I, Cordeiro MNDS, Delerue-Matos C. Computational Modelling and Sustainable Synthesis of a Highly Selective Electrochemical MIP-Based Sensor for Citalopram Detection. Molecules 2022; 27:3315. [PMID: 35630794 PMCID: PMC9143463 DOI: 10.3390/molecules27103315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
A novel molecularly imprinted polymer (MIP) has been developed based on a simple and sustainable strategy for the selective determination of citalopram (CTL) using screen-printed carbon electrodes (SPCEs). The MIP layer was prepared by electrochemical in situ polymerization of the 3-amino-4 hydroxybenzoic acid (AHBA) functional monomer and CTL as a template molecule. To simulate the polymerization mixture and predict the most suitable ratio between the template and functional monomer, computational studies, namely molecular dynamics (MD) simulations, were carried out. During the experimental preparation process, essential parameters controlling the performance of the MIP sensor, including CTL:AHBA concentration, number of polymerization cycles, and square wave voltammetry (SWV) frequency were investigated and optimized. The electrochemical characteristics of the prepared MIP sensor were evaluated by both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Based on the optimal conditions, a linear electrochemical response of the sensor was obtained by SWV measurements from 0.1 to 1.25 µmol L-1 with a limit of detection (LOD) of 0.162 µmol L-1 (S/N = 3). Moreover, the MIP sensor revealed excellent CTL selectivity against very close analogues, as well as high imprinting factor of 22. Its applicability in spiked river water samples demonstrated its potential for adequate monitoring of CTL. This sensor offers a facile strategy to achieve portability while expressing a willingness to care for the environment.
Collapse
Affiliation(s)
- Patrícia Rebelo
- REQUIMTE, LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (P.R.); (I.S.); (C.D.-M.)
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4619-007 Porto, Portugal;
| | - João G. Pacheco
- REQUIMTE, LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (P.R.); (I.S.); (C.D.-M.)
| | - Iuliia V. Voroshylova
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4619-007 Porto, Portugal;
| | - Isabel Seguro
- REQUIMTE, LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (P.R.); (I.S.); (C.D.-M.)
| | - Maria Natália D. S. Cordeiro
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4619-007 Porto, Portugal;
| | - Cristina Delerue-Matos
- REQUIMTE, LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (P.R.); (I.S.); (C.D.-M.)
| |
Collapse
|