1
|
Dinana Z, Doan YH, Maharani AT, Fitria AL, Yamani LN, Juniastuti, Wahyuni RM, Soegijanto S, Soetjipto, Utsumi T, Matsui C, Deng L, Takemae N, Kageyama T, Katayama K, Lusida MI, Shoji I. Unusual G9P[4] Rotavirus Emerged After the Dynamic Changes in Rotavirus Genotypes From Equine-Like G3 to Typical Human G1/G3 in Indonesia. J Med Virol 2024; 96:e70106. [PMID: 39670413 DOI: 10.1002/jmv.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/31/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024]
Abstract
Inter-genogroup reassortment of Rotavirus A (RVA) strains has highlighted the spread of unusual RVA strains worldwide. We previously reported the equine-like G3 RVA as the predominant strain in Indonesia in 2015-2016. However, since July 2017, typical human genotypes G1 and G3 have replaced these strains completely. To understand how dynamic changes in RVA occur in Indonesia, we performed a detailed epidemiological study. A total of 356 stool specimens were collected from hospitalized children in Sidoarjo, Indonesia between 2018 and 2022. Whole-genome sequencing was performed for all 26 RVA-positive samples using next-generation sequencing. Twenty-four samples were determined to be the unusual RVA G9P[4], while two were G9P[6]. Detailed analysis revealed that seven G9P[4] strains had the typical DS-1-like backbone, while the other strains exhibited a double-reassortant profile (G9-N1) on the DS-1-like backbone. The Bayesian evolutionary analyses suggested that the Indonesian G9P[4] strains share a common ancestor with previously reported G9P[4] strains in the VP7 and VP4 genes. G9P[4] DS-1-like strains were identified as the predominant genotype in Indonesia in 2021 for the first time. These results suggest that the G9P[4] strains were generated from the previous G9P[4] strains that had undergone further intra-reassortments with the other circulating strains.
Collapse
Affiliation(s)
- Zayyin Dinana
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Research Center on Global Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Yen Hai Doan
- Office of Laboratory Emergency Preparedness, Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Aussie Tahta Maharani
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Anisa Lailatul Fitria
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Laura Navika Yamani
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Research Center on Global Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Juniastuti
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Research Center on Global Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Rury Mega Wahyuni
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Soegeng Soegijanto
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Soetjipto
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Research Center on Global Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Takako Utsumi
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Chieko Matsui
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Lin Deng
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Nobuhiro Takemae
- Office of Laboratory Emergency Preparedness, Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsutomu Kageyama
- Office of Laboratory Emergency Preparedness, Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhiko Katayama
- Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Laboratory of Viral Infection I, Tokyo, Japan
| | - Maria Inge Lusida
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Research Center on Global Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Ikuo Shoji
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| |
Collapse
|
2
|
Antoni S, Nakamura T, Cohen AL, Mwenda JM, Weldegebriel G, Biey JNM, Shaba K, Rey-Benito G, de Oliveira LH, Oliveira MTDC, Ortiz C, Ghoniem A, Fahmy K, Ashmony HA, Videbaek D, Daniels D, Pastore R, Singh S, Tondo E, Liyanage JBL, Sharifuzzaman M, Grabovac V, Batmunkh N, Logronio J, Armah G, Dennis FE, Seheri M, Magagula N, Mphahlele J, Leite JPG, Araujo IT, Fumian TM, EL Mohammady H, Semeiko G, Samoilovich E, Giri S, Kang G, Thomas S, Bines J, Kirkwood CD, Liu N, Lee DY, Iturriza-Gomara M, Page NA, Esona MD, Ward ML, Wright CN, Mijatovic-Rustempasic S, Tate JE, Parashar UD, Gentsch J, Bowen MD, Serhan F. Rotavirus genotypes in children under five years hospitalized with diarrhea in low and middle-income countries: Results from the WHO-coordinated Global Rotavirus Surveillance Network. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001358. [PMID: 38015834 PMCID: PMC10683987 DOI: 10.1371/journal.pgph.0001358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 10/06/2023] [Indexed: 11/30/2023]
Abstract
Rotavirus is the most common pathogen causing pediatric diarrhea and an important cause of morbidity and mortality in low- and middle-income countries. Previous evidence suggests that the introduction of rotavirus vaccines in national immunization schedules resulted in dramatic declines in disease burden but may also be changing the rotavirus genetic landscape and driving the emergence of new genotypes. We report genotype data of more than 16,000 rotavirus isolates from 40 countries participating in the Global Rotavirus Surveillance Network. Data from a convenience sample of children under five years of age hospitalized with acute watery diarrhea who tested positive for rotavirus were included. Country results were weighted by their estimated rotavirus disease burden to estimate regional genotype distributions. Globally, the most frequent genotypes identified after weighting were G1P[8] (31%), G1P[6] (8%) and G3P[8] (8%). Genotypes varied across WHO Regions and between countries that had and had not introduced rotavirus vaccine. G1P[8] was less frequent among African (36 vs 20%) and European (33 vs 8%) countries that had introduced rotavirus vaccines as compared to countries that had not introduced. Our results describe differences in the distribution of the most common rotavirus genotypes in children with diarrhea in low- and middle-income countries. G1P[8] was less frequent in countries that had introduced the rotavirus vaccine while different strains are emerging or re-emerging in different regions.
Collapse
Affiliation(s)
- Sebastien Antoni
- Department of Immunization, Vaccines and Biologicals, World Health Organization Headquarters, Geneva, Switzerland
| | - Tomoka Nakamura
- Department of Immunization, Vaccines and Biologicals, World Health Organization Headquarters, Geneva, Switzerland
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Adam L. Cohen
- Department of Immunization, Vaccines and Biologicals, World Health Organization Headquarters, Geneva, Switzerland
| | - Jason M. Mwenda
- World Health Organization, Regional Office for Africa, Brazzaville, Congo
| | | | - Joseph N. M. Biey
- World Health Organization, Inter Country Support Team, Ouagadougou, Burkina Faso
| | - Keith Shaba
- World Health Organization, Regional Office for Africa, Brazzaville, Congo
| | - Gloria Rey-Benito
- Pan American Health Organization, World Health Organization, Washington District of Columbia, Washington, DC, United States of America
| | - Lucia Helena de Oliveira
- Pan American Health Organization, World Health Organization, Washington District of Columbia, Washington, DC, United States of America
| | - Maria Tereza da Costa Oliveira
- Pan American Health Organization, World Health Organization, Washington District of Columbia, Washington, DC, United States of America
| | - Claudia Ortiz
- Pan American Health Organization, World Health Organization, Washington District of Columbia, Washington, DC, United States of America
| | - Amany Ghoniem
- World Health Organization, Regional Office for the Eastern Mediterranean, Cairo, Egypt
| | - Kamal Fahmy
- World Health Organization, Regional Office for the Eastern Mediterranean, Cairo, Egypt
| | - Hossam A. Ashmony
- World Health Organization, Regional Office for the Eastern Mediterranean, Cairo, Egypt
| | - Dovile Videbaek
- World Health Organization, Regional Office for Europe, Copenhagen, Denmark
| | - Danni Daniels
- World Health Organization, Regional Office for Europe, Copenhagen, Denmark
| | - Roberta Pastore
- World Health Organization, Regional Office for Europe, Copenhagen, Denmark
| | - Simarjit Singh
- World Health Organization, Regional Office for Europe, Copenhagen, Denmark
| | - Emmanuel Tondo
- World Health Organization, Regional Office for South East Asia, Delhi, India
| | | | | | - Varja Grabovac
- World Health Organization, Regional Office for the Western Pacific, Manila, Philippines
| | - Nyambat Batmunkh
- World Health Organization, Regional Office for the Western Pacific, Manila, Philippines
| | - Josephine Logronio
- World Health Organization, Regional Office for the Western Pacific, Manila, Philippines
| | - George Armah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Francis E. Dennis
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Mapaseka Seheri
- World Health Organization Regional Reference Laboratory for Rotavirus, Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Nonkululeko Magagula
- World Health Organization Regional Reference Laboratory for Rotavirus, Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Jeffrey Mphahlele
- World Health Organization Regional Reference Laboratory for Rotavirus, Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Jose Paulo G. Leite
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Irene T. Araujo
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Tulio M. Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Hanan EL Mohammady
- Bacterial and Parasitic Diseases Research Program, U.S. Naval Medical Research Unit-3, Cairo, Egypt
| | - Galina Semeiko
- Republican Research and Practical Center for Epidemiology and Microbiology, Minsk, Belarus
| | - Elena Samoilovich
- Republican Research and Practical Center for Epidemiology and Microbiology, Minsk, Belarus
| | - Sidhartha Giri
- Division of Gastrointestinal Sciences, The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Gagandeep Kang
- Division of Gastrointestinal Sciences, The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Sarah Thomas
- Enteric Diseases Group Murdoch Children’s Research Institute, Department of Paediatrics University of Melbourne, Parkville, Victoria, Australia
| | - Julie Bines
- Enteric Diseases Group Murdoch Children’s Research Institute, Department of Paediatrics University of Melbourne, Parkville, Victoria, Australia
| | - Carl D. Kirkwood
- Enteric Diseases Group Murdoch Children’s Research Institute, Department of Paediatrics University of Melbourne, Parkville, Victoria, Australia
| | - Na Liu
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Deog-Yong Lee
- Division of Viral Diseases, Bureau of Infectious Diseases Diagnosis Control, Korea Diseases Control and Prevention Agency, Osong, Korea
| | | | - Nicola Anne Page
- National Institute for Communicable Diseases, Centre for Enteric Disease, Johannesburg, South Africa
- Faculty of Health Sciences, Department of Medical Virology, University of Pretoria, Arcadia, Pretoria, South Africa
| | - Mathew D. Esona
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - M. Leanne Ward
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | | | | | - Jon Gentsch
- Retired Researcher, West Newton, Pennsylvania, United States of America
| | | | - Fatima Serhan
- Department of Immunization, Vaccines and Biologicals, World Health Organization Headquarters, Geneva, Switzerland
| |
Collapse
|
3
|
Jampanil N, Kumthip K, Maneekarn N, Khamrin P. Genetic Diversity of Rotaviruses Circulating in Pediatric Patients and Domestic Animals in Thailand. Trop Med Infect Dis 2023; 8:347. [PMID: 37505643 PMCID: PMC10383398 DOI: 10.3390/tropicalmed8070347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Rotavirus A is a highly contagious virus that causes acute gastroenteritis in humans and a wide variety of animals. In this review, we summarized the information on rotavirus described in the studies in the last decade (2008 to 2021) in Thailand, including the prevalence, seasonality, genetic diversity, and interspecies transmission. The overall prevalence of rotavirus infection in humans ranged from 15-33%. Rotavirus infection was detected throughout the year and most frequently in the dry and cold months, typically in March. The diversity of rotavirus genotypes varied year to year and from region to region. From 2008 to 2016, rotavirus G1P[8] was detected as the most predominant genotype in Thailand. After 2016, G1P[8] decreased significantly and other genotypes including G3P[8], G8P[8], and G9P[8] were increasingly detected from 2016 to 2020. Several uncommon rotavirus strains such as G1P[6], G4P[6], and G3P[10] have also been occasionally detected. In addition, most studies on rotavirus A infection in animals in Thailand from 2011 to 2021 reported the detection of rotavirus A in piglets and canine species. It was reported that rotavirus could cross the host species barrier between humans and animals through interspecies transmission and genetic reassortment mechanisms. The surveillance of rotavirus infection is crucial to identify the trend of rotavirus infection and the emergence of novel rotavirus genotypes in this country. The data provide information on rotavirus infection and the diversity of rotavirus genotypes circulating in the pre-vaccination period, and the data will be useful for the evaluation of the effectiveness of rotavirus vaccine implementation in Thailand.
Collapse
Affiliation(s)
- Nutthawadee Jampanil
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Emerging and Re-Emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Emerging and Re-Emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Emerging and Re-Emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Lestari FB, Vongpunsawad S, Poovorawan Y. Diverse human and bat-like rotavirus G3 strains circulating in suburban Bangkok. PLoS One 2022; 17:e0268465. [PMID: 35609031 PMCID: PMC9129036 DOI: 10.1371/journal.pone.0268465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Although rotavirus vaccines are available in many parts of the world and are effective in reducing the overall incidence of rotavirus infection, it remains a major cause of diarrhea in less-developed countries. Among various rotavirus group A (RVA) strains, the increasingly common genotype G3 (defined by the VP7 gene) has been identified in both humans and animals. Our previous epidemiological surveillance in Bangkok found several unusual non-vaccine-like G3 strains in patients with diarrhea. In this study, we sequenced and characterized the genomes of seven of these G3 strains, which formed combinations with genotypes P[4], P[6], P[9], and P[10] (defined by the VP4 gene). Interestingly, we identified a bat-like RVA strain with the genome constellation G3-P[10]-I3-R3-C3-M3-A9-N3-T3-E3-H6, which has not been previously reported in the literature. The amino acid residues deduced from the nucleotide sequences of our G3 strains differed at the antigenic epitopes to those of the VP7 capsid protein of the G3 strain in RotaTeq vaccine. Although it is not unusual for the segmented genomes of RVA to reassort and give rise to emerging novel strains, the atypical G3 strains identified in this study suggest possible animal-to-human RVA zoonotic spillover even in urban areas.
Collapse
Affiliation(s)
- Fajar Budi Lestari
- Interdisciplinary Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Bioresources Technology and Veterinary, Vocational College, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|