1
|
Cánovas S, Heras S, Romero-Aguirregomezcorta J, Quintero-Moreno AA, Gadea J, Coy P, Romar R. Metabolic profile and glycemic response in fully-grown sows born using assisted reproductive technologies. Theriogenology 2024; 230:314-321. [PMID: 39368453 DOI: 10.1016/j.theriogenology.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
The aim of the present work was to gain insight into the metabolism of pigs derived from assisted reproductive technologies during their adulthood. Approximately 4h after feeding, a blood sample was taken from 3.5 year old sows born by artificial insemination (AI group, n = 7) and transfer of in vitro produced embryos (IVP group, n = 11) to determine the physiological concentrations of the main biomarkers of carbohydrates (glucose and lactate), proteins (albumin, creatinine and urea) and lipids (cholesterol and triglycerides). Four weeks later, an oral glucose tolerance test (OGTT; 1.75g glucose/kg body weight) was performed after an overnight fast and 1h of water withdrawal. Blood samples were obtained prior (T = 0 min; fasting conditions) and 15, 30, 45, 60, 90, 120, 150, 180, 210 and 240 min after glucose intake. At each time point, glycemia was measured immediately using glucometer test strips, and serum was collected to determine the above metabolites along with insulin and glucagon. After OGTT, the area under the curve (AUC) between sampling times and homeostasis model assessment of insulin resistance (HOMA) indices were calculated. Under physiological conditions, the concentration of metabolites studied was similar between AI and IVP sows. In both groups, fasting decreased cholesterol and increased triglycerides and urea (P < 0.001). However, creatinine and lactate were similar in both groups under physiological and fasting conditions. The expected increase in albuminemia and decrease in glycaemia after fasting was only observed in IVP sows. OGTT revealed a different glucose curve pattern (monophasic in AI and biphasic in IVP group), a lower mean concentration of cholesterol, glucose, lactate, triglycerides in IVP compared to AI pigs (P < 0.01), and a higher mean concentration of albumin, creatinine and insulin in IVP compared to AI group (P < 0.05). On the contrary, no differences were found between groups for mean serum glucagon and urea levels, nor for glucose homeostasis indices HOMA-IR and HOMA-%B. The AUC differed between groups at several time points with larger AUC for creatinine, and smaller AUC for glucose, glucagon, and triglycerides, in IVP pigs than in AI pigs at 180-210 min (P < 0.05). In conclusion, under physiological conditions the metabolic profile of fully-grown AI and IVP sows is similar and within normal ranges. Glucose challenge revealed differences in metabolic and insulin responses between groups but with normal glucose tolerance in both cases.
Collapse
Affiliation(s)
- S Cánovas
- Department of Physiology, Universidad de Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain
| | - S Heras
- Department of Physiology, Universidad de Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain
| | - J Romero-Aguirregomezcorta
- Department of Physiology, Universidad de Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain
| | - A A Quintero-Moreno
- Department of Physiology, Universidad de Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain
| | - J Gadea
- Department of Physiology, Universidad de Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain
| | - P Coy
- Department of Physiology, Universidad de Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain
| | - R Romar
- Department of Physiology, Universidad de Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain.
| |
Collapse
|
2
|
Lützhøft DO, Bækgård C, Wimborne E, Straarup EM, Pedersen KM, Swann JR, Pedersen HD, Kristensen K, Morgills L, Nielsen DS, Hansen AK, Bracken MK, Cirera S, Christoffersen BØ. High fat diet is associated with gut microbiota dysbiosis and decreased gut microbial derived metabolites related to metabolic health in young Göttingen Minipigs. PLoS One 2024; 19:e0298602. [PMID: 38427692 PMCID: PMC10906878 DOI: 10.1371/journal.pone.0298602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024] Open
Abstract
The objectives were 1) to characterize a Göttingen Minipig model of metabolic syndrome regarding its colon microbiota and circulating microbial products, and 2) to assess whether ovariectomized female and castrated male minipigs show similar phenotypes. Twenty-four nine-week-old Göttingen Minipigs were allocated to four groups based on sex and diet: ovariectomized females and castrated males fed either chow or high-fat diet (HFD) for 12 weeks. At study end, body composition and plasma biomarkers were measured, and a mixed meal tolerance test (MMT) and an intravenous glucose tolerance test (IVGTT) were performed. The HFD groups had significantly higher weight gain, fat percentage, fasting plasma insulin and glucagon compared to the chow groups. Homeostatic model assessment of insulin resistance index (HOMA-IR) was increased and glucose effectiveness derived from the IVGTT and Matsuda´s insulin sensitivity index from the MMT were decreased in the HFD groups. The HFD groups displayed dyslipidemia, with significantly increased total-, LDL- and HDL-cholesterol, and decreased HDL/non-HDL cholesterol ratio. The colon microbiota of HFD minipigs clearly differed from the lean controls (GuniFrac distance matrix). The main bacteria families driving this separation were Clostridiaceae, Fibrobacteraceae, Flavobacteriaceae and Porphyromonadaceae. Moreover, the species richness was significantly decreased by HFD. In addition, HFD decreased the circulating level of short chain fatty acids and beneficial microbial metabolites hippuric acid, xanthine and trigonelline, while increasing the level of branched chain amino acids. Six and nine metabolically relevant genes were differentially expressed between chow-fed and HFD-fed animals in liver and omental adipose tissue, respectively. The HFD-fed pigs presented with metabolic syndrome, gut microbial dysbiosis and a marked decrease in healthy gut microbial products and thus displayed marked parallels to human obesity and insulin resistance. HFD-fed Göttingen Minipig therefore represents a relevant animal model for studying host-microbiota interactions. No significant differences between the castrated and ovariectomized minipigs were observed.
Collapse
Affiliation(s)
- Ditte Olsen Lützhøft
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Cecilie Bækgård
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Elizabeth Wimborne
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | | | - Jonathan R. Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | | | | | - Dennis Sandris Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Susanna Cirera
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | |
Collapse
|
3
|
Insulin sensitivity is associated with the observed variation of de novo lipid synthesis and body composition in finishing pigs. Sci Rep 2022; 12:14586. [PMID: 36028540 PMCID: PMC9418310 DOI: 10.1038/s41598-022-18799-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/19/2022] [Indexed: 11/08/2022] Open
Abstract
Variations in body composition among pigs can be associated with insulin sensitivity given the insulin anabolic effect. The study objectives were to characterize this association and to compare de novo lipogenesis and the gene expression in the adipose tissue of pigs of the same genetic background. Thirty 30-95 kg of body weight (BW) pigs, catheterized in the jugular vein participated into an oral glucose tolerance test (OGTT; 1.75 g glucose/kg of BW) to calculate insulin-related indexes. The 8 fattest and the 8 leanest pigs were used to determine the relative mRNA abundance of studied genes. The rate of lipogenesis was assessed by incorporation of [U-13C]glucose into lipids. The QUICKI and Matsuda indexes negatively correlated with total body lipids (r = - 0.67 and r = - 0.59; P < 0.01) and de novo lipogenesis (r = - 0.58; P < 0.01). Fat pigs had a higher expression level of lipogenic enzymes (ACACA, ACLY; P < 0.05) than lean pigs. The reduced insulin sensitivity in fat pigs was associated with a higher expression level of glucose-6-phosphate dehydrogenase (G6PD) and a lower expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ). In conclusion, pigs with increased body lipids have lower insulin sensitivity which is associated with increased de novo lipogenesis.
Collapse
|
4
|
Zhang L, Tan C, Xin Z, Huang S, Ma J, Zhang M, Shu G, Luo H, Deng B, Jiang Q, Deng J. UPLC-Orbitrap-MS/MS Combined With Biochemical Analysis to Determine the Growth and Development of Mothers and Fetuses in Different Gestation Periods on Tibetan Sow Model. Front Nutr 2022; 9:836938. [PMID: 35425793 PMCID: PMC9001880 DOI: 10.3389/fnut.2022.836938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Pregnancy is a complex and dynamic process, the physiological and metabolite changes of the mother are affected by different pregnancy stages, but little information is available about their changes and potential mechanisms during pregnancy, especially in blood and amniotic fluid. Here, the maternal metabolism rules at different pregnancy stages were investigated by using a Tibetan sow model to analyze the physiological hormones and nutrient metabolism characteristics of maternal serum and amniotic fluid as well as their correlations with each other. Our results showed that amniotic fluid had a decrease (P < 0.05) in the concentrations of glucose, insulin and hepatocyte growth factor as pregnancy progressed, while maternal serum exhibited the highest concentrations of glucose and insulin at 75 days of gestation (P < 0.05), and a significant positive correlation (P < 0.05) between insulin and citric acid. Additionally, T4 and cortisol had the highest levels during late gestation (P < 0.05). Furthermore, metabolomics analysis revealed significant enrichment in the citrate cycle pathway and the phenylalanine/tyrosine/tryptophan biosynthesis pathway (P < 0.05) with the progress of gestation. This study clarified the adaptive changes of glucose, insulin and citric acid in Tibetan sows during pregnancy as well as the influence of aromatic amino acids, hepatocyte growth factor, cortisol and other physiological indicators on fetal growth and development, providing new clues for the normal development of the mother and the fetus, which may become a promising target for improving the well-being of pregnancy.
Collapse
Affiliation(s)
- Longmiao Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhongquan Xin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junwu Ma
- State Key Laboratory of Pig Genetic Improvement and Production Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Meiyu Zhang
- College of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hefeng Luo
- Dekon Food and Agriculture Group, Chengdu, China
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Baichuan Deng,
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Qingyan Jiang,
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Jinping Deng,
| |
Collapse
|