1
|
Chu X, Zhu X, Xu H, Zhao W, Guo D, Chen X, Wu J, Li L, Wang H, Fei J. Deciphering the role of miRNA-mRNA interactions in cerebral vasospasm post intracranial hemorrhage. Front Mol Biosci 2025; 12:1492729. [PMID: 39981435 PMCID: PMC11840915 DOI: 10.3389/fmolb.2025.1492729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
Cerebral vasospasm (CVS), a serious complication following subarachnoid hemorrhage, is associated with high rates of mortality and disability. Emerging evidence suggests that abnormal miRNA and mRNA are involved in the development of CVS. This study aims to identify essential miRNA-mRNA regulatory pairs that contribute to CVS pathogenesis. We compared the differences between spasm and non-spasm groups after cerebral hemorrhage, identifying 183 differentially expressed genes (DEGs) and 19 differentially expressed miRNAs (DEMs) related to cerebral vasospasm from the GEO database. Further functional enrichment and KEGG analysis revealed that these DEGs were enriched in several terms and pathways, including the PI3K/AKT/mTOR signaling pathway, oxidative phosphorylation pathway, RNA degradation, and folate biosynthesis signaling pathway. By employing the degree scores method for each gene, we identified the top 10 genes and developed a protein-protein interaction (PPI) network. Additionally, we discovered 19 DEMs associated with CVS and integrated them with mRNA dataset analysis to construct a miRNA-mRNA network, which comprised 8 functionally differentially expressed DEMs and 6 target mRNAs. Experimental validation confirmed the significant regulatory roles of four miRNAs (Let-7a-5p, miR-24-3p, miR-29-3p, and miR-132-3p) and two mRNAs (CDK6 and SLC2A1) in the pathogenesis of CVS. In conclusion, this comprehensive study identifies pivotal miRNAs and their target mRNAs associated with CVS through an integrated bioinformatics analysis of miRNA-mRNA co-expression networks. This approach elucidates the intricate molecular mechanisms underlying CVS and uncovers potential therapeutic targets, thereby providing a valuable foundation for refining and optimizing future treatment strategies.
Collapse
Affiliation(s)
- Xiang Chu
- Cognitive Development and Learning and Memory Disorders Translational Medicine Laboratory, Children’s Hospital, Chongqing Medical University, Chongqing, China
- Emergency Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiyan Zhu
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Honghao Xu
- Emergency Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Wenbing Zhao
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Debin Guo
- Emergency Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Xing Chen
- Department of Army Occupational Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Jinze Wu
- Emergency Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Lei Li
- Trauma Medical Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Hao Wang
- Neurosurgery Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Fei
- Emergency Department, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Wang L, Fan Z, Wang H, Xiang S. Propofol alleviates M1 polarization and neuroinflammation of microglia in a subarachnoid hemorrhage model in vitro, by targeting the miR-140-5p/TREM-1/NF-κB signaling axis. Eur J Histochem 2024; 68:4034. [PMID: 39287134 PMCID: PMC11459918 DOI: 10.4081/ejh.2024.4034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) is a devastating stroke caused by ruptured intracranial aneurysms, leading to blood accumulation around the brain. Early brain injury (EBI) within 72 h post-SAH worsens prognosis, primarily due to intense neuroinflammation. Microglia, pivotal in central nervous system defense and repair, undergo M1 to M2 polarization post-SAH, with M1 exacerbating neuroinflammation. Propofol (PPF), an anesthetic with anti-inflammatory properties, shows promise in mitigating neuroinflammation in SAH by modulating microglial activation. It likely acts through microRNAs like miR-140-5p, which attenuates microglial activation and inflammation by targeting TREM-1 and the NF-κB pathway. Understanding these mechanisms could lead to new therapeutic approaches for SAH-related EBI. In this study, BV-2 cell was used to establish in vitro model of SAH, and the expression of miR-140-5p and TREM-1 was detected after modeling. Microglial activity, apoptosis, the inflammatory pathway and response, oxidative damage, and M1/M2 polarization of microglia were evaluated by drug administration or transfection according to experimental groups. Finally, the targeting relationship between miR-140-5p and TREM-1 was verified by dual luciferase reporter assays, and the effect of PPF on the miR-140-5p/TREM-1/NF-κB signaling cascade was evaluated by RT‒qPCR or Western blotting. PPF effectively mitigates apoptosis, neuroinflammation, oxidative damage, and M1 microglial polarization in SAH. In SAH cells, PPF upregulates miR-140-5p and downregulates TREM-1. Mechanistically, PPF boosts miR-140-5p expression, while TREM-1, a downstream target of miR-140-5p, inhibits NF-κB signaling by regulating TREM-1, promoting M1 to M2 microglial polarization. Reduced miR-140-5p or increased TREM-1 counters PPF's therapeutic impact on SAH cells. In conclusion, PPF plays a neuroprotective role in SAH by regulating the miR-140-5p/TREM-1/NF-κB signaling axis to inhibit neuroinflammation and M1 polarization of microglia.
Collapse
Affiliation(s)
- Lan Wang
- Department of Anesthesiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang.
| | - Zhenyu Fan
- Department of Anesthesiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang.
| | - Haijin Wang
- Department of Anesthesiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang.
| | - Shougui Xiang
- Department of Critical Care Medicine, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang.
| |
Collapse
|
3
|
Li S, Wu W, Zhang J, Chen Y, Wu Y, Wang X. Regulation of Schwann cell proliferation and migration via miR-195-5p-induced Crebl2 downregulation upon peripheral nerve damage. Front Cell Neurosci 2023; 17:1173086. [PMID: 37469605 PMCID: PMC10352107 DOI: 10.3389/fncel.2023.1173086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/31/2023] [Indexed: 07/21/2023] Open
Abstract
Background Schwann cells acquire a repair phenotype upon peripheral nerve injury (PNI), generating an optimal microenvironment that drives nerve repair. Multiple microRNAs (miRNAs) show differential expression in the damaged peripheral nerve, with critical regulatory functions in Schwann cell features. This study examined the time-dependent expression of miR-195-5p following PNI and demonstrated a marked dysregulation of miR-195-5p in the damaged sciatic nerve. Methods CCK-8 and EdU assays were used to evaluate the effect of miR-195-5 on Schwann cell viability and proliferation. Schwann cell migration was tested using Transwell and wound healing assays. The miR-195-5p agomir injection experiment was used to evaluate the function of miR-195-5p in vivo. The potential regulators and effects of miR-195-5p were identified through bioinformatics evaluation. The relationship between miR-195-5p and its target was tested using double fluorescence reporter gene analysis. Results In Schwann cells, high levels of miR-195-5p decreased viability and proliferation, while suppressed levels had the opposite effects. However, elevated miR-195-5p promoted Schwann cell migration determined by the Transwell and wound healing assays. In vivo injection of miR-195-5p agomir into rat sciatic nerves promote axon elongation after peripheral nerve injury by affecting Schwann cell distribution and myelin preservation. Bioinformatic assessment further revealed potential regulators and effectors for miR-195-5p, which were utilized to build a miR-195-5p-centered competing endogenous RNA network. Furthermore, miR-195-5p directly targeted cAMP response element binding protein-like 2 (Crebl2) mRNA via its 3'-untranslated region (3'-UTR) and downregulated Crebl2. Mechanistically, miR-195-5p modulated Schwann cell functions by repressing Crebl2. Conclusion The above findings suggested a vital role for miR-195-5p/Crebl2 in the regulation of Schwann cell phenotype after sciatic nerve damage, which may contribute to peripheral nerve regeneration.
Collapse
Affiliation(s)
- Shiying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Wenshuang Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Jing Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Yu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Yumeng Wu
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
4
|
Fu C, Xin H, Qian Z, Li X, Gao J, Fan Y, Tang Y, Shi Y, Li D, Wu H. Sinomenine Protects against Early Brain Injury by Inhibiting Microglial Inflammatory Response via Nrf2-Dependent Pathway after Subarachnoid Hemorrhage. Brain Sci 2023; 13:brainsci13050716. [PMID: 37239188 DOI: 10.3390/brainsci13050716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/14/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Microglial activation and sustained inflammation plays an important role in the processes of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Sinomenine (SIN) has been demonstrated to have neuroprotective effects in the traumatic brain injury (TBI) model. However, the role of SIN in SAH-induced EBI and its latent mechanisms remain unclear. This study was carried out to explore the role of SIN on SAH-induced EBI and its effects on the microglial inflammatory response following SAH. In this study, a model of SAH in rats was established. Modified neurological severity scores (mNSS), encephaledema, and Nissl staining were employed to determine the effects of SIN. Western blot and immunofluorescence analysis were performed to evaluate nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Nrf2-related downstream proteins, including heme oxygenase-1 (HO-1) and quinine oxidoreductase-1 (NQO-1), were detected with immunohistochemistry analyses and Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR). Microglia activation and associated inflammatory factors, factor-kappa B (NF-κB), interleukin-1β (IL-1β), and interleukin-6 (IL-6), were assessed after SAH. The results showed that SIN administration improved neurobehavior function, and attenuated neural apoptosis and brain edema after SAH. In addition, SIN inhibited microglial action and the subsequent inflammatory response after SAH through the upregulated expression of HO-1 and NQO-1 via activation of the Nrf2 pathway. These results demonstrated that SIN supplementation provided protection against SAH-induced neuronal apoptosis by microglial inflammatory response regulation and possible involvement of the Nrf2 pathway.
Collapse
Affiliation(s)
- Chuanjing Fu
- Department of Neurosurgery, Jiangsu Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Heng Xin
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Zhengting Qian
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiang Li
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Juemin Gao
- Department of Neurosurgery, Jiangsu Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Youwu Fan
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yong Tang
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yan Shi
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Ding Li
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Heming Wu
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
5
|
Li Y, Yang S, Zhou X, Lai R. Poor expression of miR-195-5p can assist the diagnosis of cerebral vasospasm after subarachnoid hemorrhage and predict adverse outcomes. Brain Behav 2022; 12:e2766. [PMID: 36350075 PMCID: PMC9759123 DOI: 10.1002/brb3.2766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/19/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Patients with spontaneous subarachnoid hemorrhage (SAH) may develop refractory arterial cerebral vasospasm (CVS), which is the leading cause of death in SAH patients. This study explored the clinical diagnostic value of serum miR-195-5p levels in CVS after SAH (SAH + CVS) and its relationship with the prognosis of SAH + CVS. METHODS A total of 110 patients with spontaneous SAH were divided into the SAH group (N = 62) and SAH + CVS group (N = 58), with 60 healthy subjects as controls. The clinical data of blood glucose, blood sodium fluctuation, and serum lactic acid were recorded. miR-195-5p serum level was detected by RT-qPCR and its diagnostic value on SAH + CVS was analyzed by receiver operating characteristic curve. Serum levels of PDGF/IL-6/ET-1 and their correlation with miR-195-5p were analyzed using RT-qPCR, enzyme-linked immunosorbent assay, and Pearson's method. The patient prognosis was evaluated by Glasgow Outcome Scale. The effect of miR-195-5p levels on adverse prognosis was analyzed by Kaplan-Meier method and Cox regression analysis. RESULTS miR-195-5p was lowly expressed in the serum of SAH patients and lower in SAH + CVS patients. Serum miR-195-5p level assisted the diagnosis of SAH and SAH + CVS and was negatively correlated with PDGF/IL-6/ET-1 levels and was an independent risk factor together with ET-1 and blood glucose for SAH + CVS. miR-195-5p low expression predicted a higher cumulative incidence of adverse outcomes and was an independent predictor of adverse outcomes. CONCLUSION Poor expression of miR-195-5p can assist the diagnosis of SAH + CVS and predict higher adverse outcomes.
Collapse
Affiliation(s)
- Yong Li
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Senyuan Yang
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Xiaobin Zhou
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Runlong Lai
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| |
Collapse
|
6
|
Noncoding RNA as Diagnostic and Prognostic Biomarkers in Cerebrovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8149701. [PMID: 35498129 PMCID: PMC9042605 DOI: 10.1155/2022/8149701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/22/2022] [Indexed: 02/06/2023]
Abstract
Noncoding RNAs (ncRNAs), such as microRNAs, long noncoding RNAs, and circular RNAs, play an important role in the pathophysiology of cerebrovascular diseases (CVDs). They are effectively detectable in body fluids, potentially suggesting new biomarkers for the early detection and prognosis of CVDs. In this review, the physiological functions of circulating ncRNAs and their potential role as diagnostic and prognostic markers in patients with cerebrovascular diseases are discussed, especially in acute ischemic stroke, subarachnoid hemorrhage, and moyamoya disease.
Collapse
|