1
|
Engel J, Wieder V, Bauer M, Kaufhold S, Stückrath K, Wilke J, Hanf V, Uleer C, Lantzsch T, Peschel S, John J, Pöhler M, Weigert E, Bürrig KF, Buchmann J, Santos P, Kantelhardt EJ, Thomssen C, Vetter M. Prognostic and predictive impact of NOTCH1 in early breast cancer. Breast Cancer Res Treat 2024:10.1007/s10549-024-07444-1. [PMID: 39153127 DOI: 10.1007/s10549-024-07444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
PURPOSE Systemic therapy plays a major part in the cure of patients with early breast cancer (eBC). However, personalized treatment concepts are required to avoid potentially harmful overtreatment. Biomarkers are pivotal for individualized therapy. The Notch signalling pathway is widely considered as a suitable prognostic or predictive marker in eBC. This study aimed primarily at assessing the relationship between NOTCH1 mRNA expression levels and histopathological features of breast cancer tumors, as well as clinical characteristics of the correspondent eBC patients. As a secondary aim, we investigated the prognostic and predictive value of NOTCH1 by assessing possible associations between NOTCH1 mRNA expression and recurrence-free interval (RFI) and overall survival after five years of observation. PATIENTS AND METHODS The relative NOTCH1 mRNA expression was determined in 414 tumour samples, using quantitative PCR in a prospective, multicenter cohort (Prognostic Assessment in Routine Application (PiA), 2009-2011, NCT01592825) of 1,270 female eBC patients. RESULTS High NOTCH1 mRNA expression was detected in one-third of the tumours and was associated with negative hormone receptor status and high uPA/PAI-1 status. In addition, high NOTCH1 mRNA expression was found to be associated with more RFI related events (adjusted hazard ratio 2.1, 95% CI 1.077-4.118). Patients who received adjuvant chemotherapy and had high NOTCH1 mRNA expression in the tumour (n = 86) were three times more likely to have an RFI event (adjusted hazard ratio 3.1, 95% CI 1.321-7.245, p = 0.009). CONCLUSION In this cohort, NOTCH1 mRNA expression had a prognostic and predictive impact. Tumours with high NOTCH1 mRNA expression may be less sensitive to cytotoxic treatment and downregulation of the Notch signalling pathway (e.g. by γ-secretase inhibitors) may be valuable for eBC therapy as an individualised treatment option.
Collapse
Affiliation(s)
- Julia Engel
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Vanessa Wieder
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sandy Kaufhold
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kathrin Stückrath
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jochen Wilke
- Onkologische Gemeinschaftspraxis, Fürth, Germany
| | - Volker Hanf
- Department of Obstetrics and Gynaecology, Klinikum Fürth, Nathanstift Fürth, Germany
| | - Christoph Uleer
- Gynäkologisch-Onkologische Praxis, Hildesheim, Germany
- Frauenärzte Am Bahnhofsplatz, Hildesheim, Germany
| | - Tilmann Lantzsch
- Department of Gynaecology, Hospital St. Elisabeth and St. Barbara, Halle (Saale), Germany
| | - Susanne Peschel
- Department of Gynaecology, St. Bernward Hospital, Hildesheim, Germany
| | - Jutta John
- Department of Gynaecology, Helios Hospital Hildesheim, Hildesheim, Germany
| | - Marleen Pöhler
- Department of Gynaecology, Asklepios Hospital Goslar, Goslar, Germany
- Department of Gynaecology and Obstretrics, Hospital Wolfenbüttel, Wolfenbüttel, Germany
| | - Edith Weigert
- Institute of Pathology, Hospital Fürth, Fürth, Germany
- Gemeinschaftspraxis Amberg, Amberg, Germany
| | | | - Jörg Buchmann
- Institute of Pathology, Hospital Martha-Maria, Halle (Saale), Germany
| | - Pablo Santos
- Institute of Epidemiology, Biometry and Informatics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Eva Johanna Kantelhardt
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Institute of Epidemiology, Biometry and Informatics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christoph Thomssen
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martina Vetter
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
2
|
Zhong C, Wang G, Guo M, Zhu N, Chen X, Yan Y, Li N, Yu W. The Role of Tumor Stem Cells in Colorectal Cancer Drug Resistance. Cancer Control 2024; 31:10732748241274196. [PMID: 39215442 PMCID: PMC11367616 DOI: 10.1177/10732748241274196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Background: Colorectal cancer is a major cause of mortality among the prevalent malignant tumors of the gastrointestinal tract. Although chemotherapy is a standard treatment for colorectal cancer, its efficacy is limited by chemoresistance. Recent studies have investigated targeting tumor stem cells as a potential new therapeutic approach for addressing chemoresistance in colorectal cancer. Colorectal cancer frequently relapses, with tumor stem cells often representing one of the leading causes of treatment failure. Purpose: Understanding drug resistance in colorectal cancer stem cells is crucial for improving treatment outcomes. By focusing on developing targeted therapies that specifically address drug resistance in colorectal cancer stem cells, there is potential to make significant advancements in the treatment of colorectal cancer.This approach may lead to more effective and lasting outcomes in patients battling colorectal cancer. Research Design: In this review, a comprehensive overview of recent research on colorectal cancer stem cell treatment resistance is presented.Results: Elucidating the key underlying mechanisms. This review also highlights the potential benefits of targeted therapies in overcoming colorectal cancer resistance to treatment. Conclusions: CCSCs are key players in drug resistance of CRC, indicating their potential as targets for effective therapy. Elucidating their role in this process could aid in discovering tailored treatment strategies.The significance of signaling pathways, TME, and miRNA in regulating drug resistance in CCSCs is been highlighted.
Collapse
Affiliation(s)
- Chen Zhong
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Guojuan Wang
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Min Guo
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Naicheng Zhu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiudan Chen
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuwei Yan
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Nanxin Li
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wenyan Yu
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
3
|
Ahn M, Lee T, Kim KS, Lee S, Na K. Synergistic Approach of Antibody-Photosensitizer Conjugate Independent of KRAS-Mutation and Its Downstream Blockade Pathway in Colorectal Cancer. Adv Healthc Mater 2023; 12:e2302374. [PMID: 37722358 DOI: 10.1002/adhm.202302374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Here, a novel approach is presented to improve the efficacy of antibody-drug conjugates (ADC) by integrating antibody-mediated immunotherapy and photodynamic therapy (PDT) in a combination therapy system utilizing an antibody-photosensitizer conjugate (APC) platform based on a poloxamer polymer linker. To specifically target Kirsten rat sarcoma 2 viral oncogene homolog (KRAS)-mutated cancer cells, an antibody antiepidermal growth factor receptor (EGFR), cetuximab, with a poloxamer linker coupled with the photosensitizer chlorin e6 through click chemistry (cetuximab-maleimide-poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)-chlorine e6 conjugate, CMPXC) is synthesized. CMPXC is cytotoxic upon laser treatment, achieving a 90% cell death by suppressing KRAS downstream signaling pathways associated with ERK and AKT proteins, confirmed using RNA sequencing analysis. In KRAS-mutated colorectal cancer mouse models, CMPXC significantly enhances antitumor efficacy compared with cetuximab treatment alone, resulting in an 86% reduction in tumor growth. Furthermore, CMPXC treatment leads to a 2.24- and 1.75-fold increase in dendritic and priming cytotoxic T cells, respectively, highlighting the immune-activating potential of this approach. The findings suggest that the APC platform addresses the challenges associated with ADC development and EGFR-targeted therapy, including the synergistic advantages of antibody-mediated immunotherapy and PDT.
Collapse
Affiliation(s)
- Minji Ahn
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Taebum Lee
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Kyoung Sub Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Sanghee Lee
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Kun Na
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| |
Collapse
|
4
|
Tramontano C, De Stefano L, Rea I. Diatom-Based Nanomedicine for Colorectal Cancer Treatment: New Approaches for Old Challenges. Mar Drugs 2023; 21:md21050266. [PMID: 37233460 DOI: 10.3390/md21050266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Colorectal cancer is among the most prevalent and lethal cancers globally. To address this emergency, countries have developed diffuse screening programs and innovative surgical techniques with a consequent decrease in mortality rates in non-metastatic patients. However, five years after diagnosis, metastatic CRC is still characterized by less than 20% survival. Most patients with metastatic CRC cannot be surgically treated. For them, the only option is treatment with conventional chemotherapies, which cause harmful side effects in normal tissues. In this context, nanomedicine can help traditional medicine overcome its limits. Diatomite nanoparticles (DNPs) are innovative nano-based drug delivery systems derived from the powder of diatom shells. Diatomite is a porous biosilica largely found in many areas of the world and approved by the Food and Drug Administration (FDA) for pharmaceutical and animal feed formulations. Diatomite nanoparticles with a size between 300 and 400 nm were shown to be biocompatible nanocarriers capable of delivering chemotherapeutic agents against specific targets while reducing off-target effects. This review discusses the treatment of colorectal cancer with conventional methods, highlighting the drawbacks of standard medicine and exploring innovative options based on the use of diatomite-based drug delivery systems. Three targeted treatments are considered: anti-angiogenetic drugs, antimetastatic drugs, and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Chiara Tramontano
- Institute of Applied Science and Intelligent Systems (ISASI), National Research Council of Italy-Naples Unit, Via Pietro Castellino 111, 80131 Naples, Italy
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Luca De Stefano
- Institute of Applied Science and Intelligent Systems (ISASI), National Research Council of Italy-Naples Unit, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Ilaria Rea
- Institute of Applied Science and Intelligent Systems (ISASI), National Research Council of Italy-Naples Unit, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
5
|
Dai XJ, Xue LP, Ji SK, Zhou Y, Gao Y, Zheng YC, Liu HM, Liu HM. Triazole-fused pyrimidines in target-based anticancer drug discovery. Eur J Med Chem 2023; 249:115101. [PMID: 36724635 DOI: 10.1016/j.ejmech.2023.115101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
In recent decades, the development of targeted drugs has featured prominently in the treatment of cancer, which is among the major causes of mortality globally. Triazole-fused pyrimidines, a widely-used class of heterocycles in medicinal chemistry, have attracted considerable interest as potential anticancer agents that target various cancer-associated targets in recent years, demonstrating them as valuable templates for discovering novel anticancer candidates. The current review concentrates on the latest advancements of triazole-pyrimidines as target-based anticancer agents, including works published between 2007 and the present (2007-2022). The structure-activity relationships (SARs) and multiple pathways are also reviewed to shed light on the development of more effective and biotargeted anticancer candidates.
Collapse
Affiliation(s)
- Xing-Jie Dai
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Lei-Peng Xue
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Shi-Kun Ji
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Ying Zhou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Hui-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| |
Collapse
|
6
|
Zhu Y, Li X. Advances of Wnt Signalling Pathway in Colorectal Cancer. Cells 2023; 12:cells12030447. [PMID: 36766788 PMCID: PMC9913588 DOI: 10.3390/cells12030447] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Colorectal cancer (CRC) represents one of the most common cancers worldwide, with a high mortality rate despite the decreasing incidence and new diagnostic and therapeutic strategies. CRC arises from both epidemiologic and molecular backgrounds. In addition to hereditary factor and genetic mutations, the strongly varying incidence of CRC is closely linked to chronic inflammatory disorders of the intestine and terrible dietary habits. The Wnt signalling pathway is a complex regulatory network that is implicated in many CRC physiological processes, including cancer occurrence, development, prognosis, invasion, and metastasis. It is currently believed to include classical Wnt/β-catenin, Wnt/PCP, and Wnt/Ca2+. In this review, we summarise the recent mechanisms and potential regulators of the three branches of the Wnt signalling pathway in CRC.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Marine College, Shandong University, Weihai 264200, China
| | - Xia Li
- Marine College, Shandong University, Weihai 264200, China
- Shandong Kelun Pharmaceutical Co., Ltd., Binzhou 256600, China
- Correspondence: ; Tel.: +86-0531-8838-2612
| |
Collapse
|
7
|
Wang Y, Chen FR, Wei CC, Sun LL, Liu CY, Yang LB, Guo XY. Zinc finger protein 671 has a cancer-inhibiting function in colorectal carcinoma via the deactivation of Notch signaling. Toxicol Appl Pharmacol 2023; 458:116326. [PMID: 36436566 DOI: 10.1016/j.taap.2022.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Zinc finger protein 671 (ZNF671) has been described as a vital cancer inhibitor in multiple neoplasms, yet the functional roles of ZNF671 in colorectal carcinoma (CRC) remain unresolved. This project examined the possible link between ZNF671 and CRC. Lower levels of ZNF671 were observed in CRC tissue compared with noncancerous tissue, which were related to a worse survival rate in CRC patients. High methylation levels at the ZNF671 gene promoter region were shown in CRC tissue, which were inversely correlated with ZNF671 expression. Treatment with demethylation agents restored ZNF671 levels in CRC cell lines. Up-regulation of ZNF671 resulted in suppressive effects on the proliferative ability and metastatic potency of CRC cells. Moreover, the up-regulation of ZNF671 reinforced the chemosensitivity of CRC cells. A mechanism study determined ZNF671 to be a vital mediator of Notch signaling. The up-regulation of ZNF671 decreased the expression of Notch1 and lowered the levels of NICD, HES1, and HEY1. The overexpression of NICD1 diminished ZNF671-mediated antitumor effects. ZNF671 depletion reinforced Notch signaling, and Notch suppression reversed ZNF671-depletion-elicited protumor effects. Moreover, the overexpression of ZNF671 weakened the tumorigenicity of CRC cells in a xenograft model in vivo. In summary, ZNF671 exerts a cancer-inhibiting function in CRC via the deactivation of Notch signaling. Low ZNF671 levels caused by gene promoter hypermethylation contribute to the malignant transformation of CRC. This work underlines the interest of ZNF671 as a target candidate for exploiting novel anti-CRC therapies.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Fen-Rong Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Chong-Cao Wei
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Lin-Lang Sun
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Chen-Yu Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Long-Bao Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Xiao-Yan Guo
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
8
|
Lee PY, Yeoh Y, Low TY. A recent update on small‐molecule kinase inhibitors for targeted cancer therapy and their therapeutic insights from mass spectrometry‐based proteomic analysis. FEBS J 2022. [PMID: 35313089 DOI: 10.1111/febs.16442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/21/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI) Universiti Kebangsaan Malaysia Kuala Lumpur Malaysia
| | - Yeelon Yeoh
- UKM Medical Molecular Biology Institute (UMBI) Universiti Kebangsaan Malaysia Kuala Lumpur Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI) Universiti Kebangsaan Malaysia Kuala Lumpur Malaysia
| |
Collapse
|