1
|
Nair RR, John KR, Rajan P, Krishnan R, Safeena MP. Co-infection of Lactococcus garvieae and Aeromonas hydrophila in cultured Nile Tilapia in Kerala, India. Braz J Microbiol 2024; 55:2071-2083. [PMID: 38904690 PMCID: PMC11405729 DOI: 10.1007/s42770-024-01415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Co-infection of Lactococcus garvieae and Aeromonas hydrophila, has been confirmed from diseased Nile Tilapia (Oreochromis niloticus), Chithralada strain cultured in a freshwater rearing pond of Alappuzha district of Kerala, India. The aetiological agents behind the disease outbreak were bacteriologically proven and confirmed by 16SrRNA sequencing and phylogenetic analysis. PCR detection of the virulent genes, showed existence of adhesin and hemolysin in L. garvieae and aerolysin in A. hydrophila strain obtained. To fulfil Koch's postulates, challenge experiments were conducted and median lethal dose (LD50) of L. garvieae and A. hydrophila was calculated as 1 × 105.91 CFU per mL and 1 × 105.2 CFU per mL respectively. Histopathologically, eyes, spleen, and kidney were the predominantly infected organs by L. garvieae and A. hydrophila. Out of the 13 antibiotics tested to check antibiotic susceptibility, L. garvieae showed resistance to almost 7 antibiotics tested, with a resistance to Ciprofloxacin while A. hydrophila was found resistant to Streptomycin and Erythromycin. Understanding the complex interaction between Gram-positive and Gram-negative bacteria in the disease process and pathogenesis in fish host will contribute to efficient treatment strategies. As a preliminary investigation into this complex interaction, the present study is aimed at phenotypic and genotypic characterization, pathogenicity evaluation, and antibiotic susceptibility of the co-infecting pathogens in a diseased sample of freshwater-farmed Nile tilapia.
Collapse
Affiliation(s)
- Reshma Rajeev Nair
- Department of Aquatic Animal Health Management, Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Kollanoor Riji John
- Department of Aquatic Animal Health Management, Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Preenanka Rajan
- Department of Ocean Studies and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Rahul Krishnan
- Department of Aquatic Animal Health Management, Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Muhammed Puratheparampilchira Safeena
- Department of Aquatic Animal Health Management, Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India.
| |
Collapse
|
2
|
Lu S, Liao X, Lu W, Zhang L, Na K, Li X, Guo X. L-Alanine promotes anti-infectious properties of Bacillus subtilis S-2 spores via the germination receptor gerAA. Probiotics Antimicrob Proteins 2024; 16:1399-1410. [PMID: 37439954 DOI: 10.1007/s12602-023-10121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Bacillus species, which have two cell-type forms (vegetative cells and spores), demonstrate a variety of probiotic functions in animal feed additives and human nutrition. We previously found that the probiotic effect of Bacillus subtilis S-2 spores with high germination response to L-alanine was specifically enhanced by the L-alanine pretreatment. The germination response of Bacillus is highly associated with the germination receptors of spores. However, how L-alanine-induced germination of spores exerts anti-infectious effect in epithelial cells remains unclear. In this study, we constructed the mutant strain of B. subtilis S-2 with germination receptor gerAA knockout to further explore the role of spore germination in resisting pathogen infection to cells. The differential probiotic effects of B. subtilis S-2 and S-2ΔgerAA spores pretreated with L-alanine were evaluated in intestinal porcine epithelial cells (IPEC-J2) or Caco2 cells infected with enterotoxigenic Escherichia coli (ETEC) or following IL-1β stimulation. The results showed that the germination response of the S-2ΔgerAA spores to L-alanine was significantly reduced. Compared with the S-2ΔgerAA spores, the L-alanine-induced germination of B. subtilis S-2 spores significantly increased the activity of anti-adhesion of ETEC to IPEC-J2 cells and reduced the expression of inflammatory factors and cell receptors. L-alanine induction also significantly promoted the expression of autophagy-related proteins in the B. subtilis S-2 spores. These findings demonstrate that the gerAA germination receptor is essential for the probiotic function of Bacillus spores and that L-alanine treatment promotes the anti-infectious properties of the germinated spores in porcine intestinal epithelial IPEC-J2 cells. The result suggests the importance of germination receptor gerAA in helping spore germination and enhancing anti-infectious activity. The findings in the study benefit to screening of potential Bacillus probiotics and increasing probiotic efficacy induced by L-alanine as an adjuvant.
Collapse
Affiliation(s)
- Shuang Lu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China
| | - Xianying Liao
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China
| | - Wei Lu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China
| | - Xiangyu Li
- CABIO Bioengineering (Wuhan) Co., Ltd, Wuhan City, 430074, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China.
| |
Collapse
|
3
|
Garcia Neto PG, Titon SCM, Muxel SM, Titon B, Figueiredo ACD, Floreste FR, Lima AS, Assis VR, Gomes FR. Immune and endocrine alterations at the early stage of inflammatory assemblage in toads after stimulation with heat-killed bacteria (Aeromonas hydrophila). Comp Biochem Physiol A Mol Integr Physiol 2024; 291:111606. [PMID: 38354902 DOI: 10.1016/j.cbpa.2024.111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
The red-leg syndrome in amphibians is a condition commonly associated with the bacteria Aeromonas hydrophila and has led to population declines. However, there is little information concerning the inflammatory assemblage in infected anurans. We evaluated immune and endocrine alterations induced by stimulation with heat-killed A. hydrophila injected in Rhinella diptycha toads. Control animals were not manipulated, while the others were separated into groups that received intraperitoneal injection of 300 μl of saline or heat-killed bacteria: groups A1 (3 × 107 cells), A2 (3 × 108 cells), and A3 (3 × 109 cells). Animals were bled and euthanized six hours post-injection. We evaluated neutrophil: lymphocyte ratio (NLR), plasma bacterial killing ability (BKA), testosterone (T), melatonin (MEL), and corticosterone (CORT) plasma levels. Heat-killed A. hydrophila increased CORT and NLR, and decreased MEL, especially at higher concentrations. There was no effect of treatment on T and BKA. We then selected the saline and A3 groups to conduct mRNA expression of several genes including glucocorticoid receptor (GR), toll-like receptor-4 (TLR-4), interferon-γ (IFN-γ), interleukin (IL)-1β, IL-6, and IL-10. We found higher expression of IL-6, IL-1β, IL-10, and IFN-γ in group A3 compared to the saline group. These results indicate the beginning of an inflammatory assemblage, notably at the two highest concentrations of bacteria, and give a better understanding of how anurans respond to an infection within an integrated perspective, evaluating different physiological aspects. Future studies should investigate later phases of the immune response to elucidate more about the inflammation in amphibians challenged with A. hydrophila.
Collapse
Affiliation(s)
- Patrício G Garcia Neto
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - n° 101, Cidade Universitária, São Paulo, SP CEP 05508-900, Brazil.
| | - Stefanny C M Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - n° 101, Cidade Universitária, São Paulo, SP CEP 05508-900, Brazil
| | - Sandra M Muxel
- Laboratório de Neuroimunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes n° 1730, Cidade Universitária, São Paulo, SP CEP 05508-000, Brazil.
| | - Braz Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - n° 101, Cidade Universitária, São Paulo, SP CEP 05508-900, Brazil
| | - Aymam C de Figueiredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - n° 101, Cidade Universitária, São Paulo, SP CEP 05508-900, Brazil
| | - Felipe R Floreste
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - n° 101, Cidade Universitária, São Paulo, SP CEP 05508-900, Brazil
| | - Alan S Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - n° 101, Cidade Universitária, São Paulo, SP CEP 05508-900, Brazil
| | - Vania R Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - n° 101, Cidade Universitária, São Paulo, SP CEP 05508-900, Brazil; Global Health and Interdisciplinary Disease Research Center and Center for Genomics, College of Public Health, Interdisciplinary Research Building (IDRB), 3720 Spectrum Boulevard. Tampa, FL 33612-9415, United States. https://twitter.com/VaniaRAssis1
| | - Fernando R Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - n° 101, Cidade Universitária, São Paulo, SP CEP 05508-900, Brazil.
| |
Collapse
|
4
|
Wang B, Shao Y, Wang X, Li C. Identification and functional analysis of Toll-like receptor 2 from razor clam Sinonovacula constricta. Int J Biol Macromol 2024; 265:131029. [PMID: 38518946 DOI: 10.1016/j.ijbiomac.2024.131029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Toll-like receptor 2 (TLR2) is a member of TLR family that plays important roles in the innate immune system, such as pathogen recognition and inflammation regulation. In this study, the TLR2 homologue was cloned from razor clam Sinonovacula constricta (denoted as ScTLR2) and its immune function was explored. The full-length cDNA of ScTLR2 comprised 2890 nucleotides with a 5'-UTR of 218 bp, an open reading frame of 2169 bp encoding 722 amino acids and a 3'-UTR of 503 bp. The deduced amino acid of ScTLR2 showed similar structure to TLR2 homologue with a conserved signal peptide, four LRR domains, one LRR-TYP domain, one LRR-CT domain, one transmembrane domain and a conserved TIR domain. ScTLR2 mRNA was detected in all examined tissues with the highest expression in the gill. After Vibrio parahaemolyticus challenge, the mRNA expression of ScTLR2 was significantly induced both in gill and haemocytes. The recombinant ScTLR2-LRR protein could bind all tested PAMPs including LPS, PGN and MAN. Bacterial agglutination assay showed that rScTLR2 could agglutinate the six tested bacteria with a calcium dependent manner. More importantly, ScTLR2 silencing by siRNA transfection could significantly depress the mRNA expression of Myd88, NF-κB, Tollip, IRF1, and IRF8. The survival rate of S. constricta was markedly decreased after V. parahaemolyticus challenge under this condition. Our current study demonstrated that ScTLR2 served as a pattern recognition receptor to induce immune response against invasive pathogen.
Collapse
Affiliation(s)
- Beibei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China.
| | - Xuelei Wang
- Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
5
|
Razali SA, Shamsir MS, Ishak NF, Low CF, Azemin WA. Riding the wave of innovation: immunoinformatics in fish disease control. PeerJ 2023; 11:e16419. [PMID: 38089909 PMCID: PMC10712311 DOI: 10.7717/peerj.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/17/2023] [Indexed: 12/18/2023] Open
Abstract
The spread of infectious illnesses has been a significant factor restricting aquaculture production. To maximise aquatic animal health, vaccination tactics are very successful and cost-efficient for protecting fish and aquaculture animals against many disease pathogens. However, due to the increasing number of immunological cases and their complexity, it is impossible to manage, analyse, visualise, and interpret such data without the assistance of advanced computational techniques. Hence, the use of immunoinformatics tools is crucial, as they not only facilitate the management of massive amounts of data but also greatly contribute to the creation of fresh hypotheses regarding immune responses. In recent years, advances in biotechnology and immunoinformatics have opened up new research avenues for generating novel vaccines and enhancing existing vaccinations against outbreaks of infectious illnesses, thereby reducing aquaculture losses. This review focuses on understanding in silico epitope-based vaccine design, the creation of multi-epitope vaccines, the molecular interaction of immunogenic vaccines, and the application of immunoinformatics in fish disease based on the frequency of their application and reliable results. It is believed that it can bridge the gap between experimental and computational approaches and reduce the need for experimental research, so that only wet laboratory testing integrated with in silico techniques may yield highly promising results and be useful for the development of vaccines for fish.
Collapse
Affiliation(s)
- Siti Aisyah Razali
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
- Biological Security and Sustainability Research Interest Group (BIOSES), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohd Shahir Shamsir
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nur Farahin Ishak
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Chen-Fei Low
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan-Atirah Azemin
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| |
Collapse
|
6
|
Xu J, Qin C, Xie J, Wang J, He Y, Tan J, Shi X. Transcriptome analysis of Chinese sucker (Myxocyprinus asiaticus) head kidney and discovery of key immune-related genes to cold stress after swimming fatigue. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101104. [PMID: 37390763 DOI: 10.1016/j.cbd.2023.101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
For Chinese sucker (Myxocyprinus asiaticus), passing through a dam with fast flow and cold water are always unavoidable, and this process can cause stress, disease or even death. In this study, comparative transcriptome analysis was conducted to investigate the potential immune mechanism in head kidney of M. asiaticus with swimming fatigue stress and cold stress after fatigue. In general, a total of 181,781 unigenes were generated, and 38,545 differentially expressed genes (DEGs) were identified. In these DEGs, 22,593, 7286 and 8666 DEGs were identified among groups of fatigue vs. cold, control vs. cold, and control vs. fatigue, respectively. Enrichment analysis revealed these DEGs were involved in coagulation cascades and complement, natural killer cell mediated cytotoxicity, antigen processing and presentation, Toll-like receptor signaling pathways, and chemokine signaling pathway. Notably, immune genes including heat shock protein 4a (HSP4a), HSP70 and HSP90α genes were significantly up-regulated in fishes with cold stress after fatigue. Differently, more immune genes in control vs. cold compared with that in control vs. fatigue were significantly down-regulated expression, such as claudin-15-like, Toll-like receptor 13, antimicrobial peptide (hepcidin), immunoglobulin, CXCR4 chemokine receptor, T-cell receptor, complement factor B/C2-A3, and interleukin 8. In this study, the number of DEGs in the head kidney was less than that our previous study in the spleen, which we speculated was more sensitive to changes in water temperature than the head kidney. In summary, lots of immune-related genes in the head kidney were down-regulated under cold stress after fatigue, suggesting that M. asiaticus might have experienced severe immunosuppression in the process of passing through the dam.
Collapse
Affiliation(s)
- Jing Xu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China.
| | - Jiang Xie
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Yang He
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Junjun Tan
- Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang 443002, China
| | - Xiaotao Shi
- Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
7
|
Understanding the molecular response of non-mammalian toll-like receptor 22 (TLR22) in amphibious air-breathing catfish, Clarias magur (Hamilton, 1822) to bacterial infection or ligand stimulation through molecular cloning and expression profiling. Gene 2023; 866:147351. [PMID: 36893873 DOI: 10.1016/j.gene.2023.147351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/18/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Toll-like receptor (TLR) 22 is a non-mammalian TLR, which is identified initially as a functional substitute of mammalian TLR3 in recognizing cell surface long dsRNA in teleosts. To understand the pathogen surveillance role played by TLR22 in an air-breathing catfish model the full-length cDNA of TLR22 was identified in Clarias magur and found to be consisted of 3597 nucleotides encoding for 966 amino acids. In the deduced amino acid sequence of C. magur TLR22 (CmTLR22) key signature domains such as one signal peptide, 13 LRRs, one transmembrane domain, one LRR_CT domain and an intracellular TIR domain could be identified. The CmTLR22 formed a separate cluster with other catfish TLR22 genes and situated within the TLR22 cluster in the phylogenetic analysis of teleost TLR groups. The CmTLR22 was constitutively expressed in all the 12 tested tissues of healthy C. magur juveniles with the highest transcript abundance in spleen followed by brain, intestine and head kidney. Following induction with the dsRNA viral analogue, poly (I:C), the level of expression of CmTLR22 was up-regulated in tissues such as kidney, spleen and gills. Whereas, in Aeromonas hydrophila-challenged C. magur, the expression levels of CmTLR22 was found to be up-regulated in gills, kidney and spleen, and down-regulated in liver. The findings of the current study suggest that the specific function of TLR22 is evolutionarily conserved in C. magur and might play a key role in mounting immune response by recognizing Gram-negative fish pathogen such as A. hydrophila and aquatic viruses in air-breathing amphibious catfishes.
Collapse
|
8
|
Xu A, Han F, Zhang Y, Zhou T, Gao T. Comparative Transcriptomic Analyses Revealed the Effects of Poly (I:C) on the Liver and Spleen of Argyrosomus japonicus. Int J Mol Sci 2022; 23:ijms23179801. [PMID: 36077207 PMCID: PMC9455969 DOI: 10.3390/ijms23179801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Poly (I:C) can work as an immunostimulant and a viral vaccine; however, its functional mechanism in aquatic animals needs to be further investigated. In this study, comparative transcriptomic analyses were performed to investigate the effects of poly (I:C) on Argyrosomus japonicus at 12 h and 48 h postinjection. A total of 194 and 294 differentially expressed genes were obtained in the liver and spleen, respectively. At 12 h, poly (I:C) injection could significantly influence the function of the metabolism-related pathways and immune-related pathways in the liver through the upregulation of the genes GST, LPIN, FOXO1, CYP24A1, ECM1, and SGK1, and the downregulation of the genes IL-1β, CXC19, TNFAIP3, and IRF1. At 48 h, poly (I:C) could enhance the liver energy metabolism by upregulating the genes TXNRD and ECM1, while it also induced some injury in the cells with the downregulation of the genes HBA and CYP24A1. In the spleen, poly (I:C) could regulate the fish immunity and inflammatory response by upregulating the genes DDIT4, C3, EFNA, and MNK, and by downregulating the genes ABCA1, SORT1, TNF, TLR2, IL8, and MHCII at 12 h, and at 48 h, the poly (I:C) had a similar influence as that in the liver. Intersection analyses demonstrated that CYP24A1 and ECM1 were the main functional genes that contributed to the health of the liver. Ten and four genes participated in maintaining the health of the two tissues after 12 h and 48 h, respectively. In summary, our results provided a new insight into ploy (I:C) application in A. japonicus, and it also helped us to better understand the fish response mechanism to the viral vaccine injection.
Collapse
Affiliation(s)
- Anle Xu
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Fei Han
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Yuan Zhang
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Tao Zhou
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Tianxiang Gao
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
- Correspondence: ; Tel.: +86-1-35-8707-2063
| |
Collapse
|