1
|
Latour-Paczka K, Luciński R. Artificial Biopolymers Derived from Transgenic Plants: Applications and Properties-A Review. Int J Mol Sci 2024; 25:13628. [PMID: 39769390 PMCID: PMC11676134 DOI: 10.3390/ijms252413628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Biodegradable materials are currently one of the main focuses of research and technological development. The significance of these products grows annually, particularly in the fight against climate change and environmental pollution. Utilizing artificial biopolymers offers an opportunity to shift away from petroleum-based plastics with applications spanning various sectors of the economy, from the pharmaceutical and medical industries to food packaging. This paper discusses the main groups of artificial biopolymers. It emphasizes the potential of using genetically modified plants for its production, describing the primary plant species involved in these processes and the most common genetic modifications. Additionally, the paper explores the potential applications of biobased polymers, highlighting their key advantages and disadvantages in specific context.
Collapse
Affiliation(s)
| | - Robert Luciński
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| |
Collapse
|
2
|
Wang Z, Peng Z, Khan S, Qayyum A, Rehman A, Du X. Unveiling the power of MYB transcription factors: Master regulators of multi-stress responses and development in cotton. Int J Biol Macromol 2024; 276:133885. [PMID: 39019359 DOI: 10.1016/j.ijbiomac.2024.133885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Plants, being immobile, are subject to environmental stresses more than other creatures, necessitating highly effective stress tolerance systems. Transcription factors (TFs) play a crucial role in the adaptation mechanism as they can be activated by diverse signals and ultimately control the expression of stress-responsive genes. One of the most prominent plant TFs family is MYB (myeloblastosis), which is involved in secondary metabolites, developmental mechanisms, biological processes, cellular architecture, metabolic pathways, and stress responses. Extensive research has been conducted on the involvement of MYB TFs in crops, while their role in cotton remains largely unexplored. We also utilized genome-wide data to discover potential 440 MYB genes and investigated their plausible roles in abiotic and biotic stress conditions, as well as in different tissues across diverse transcriptome databases. This review primarily summarized the structure and classification of MYB TFs biotic and abiotic stress tolerance and their role in secondary metabolism in different crops, especially in cotton. However, it intends to identify gaps in current knowledge and emphasize the need for further research to enhance our understanding of MYB roles in plants.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China; Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China
| | - Sana Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China.
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China.
| |
Collapse
|
3
|
Long Y, Chen Q, Qu Y, Liu P, Jiao Y, Cai Y, Deng X, Zheng K. Identification and functional analysis of PIN family genes in Gossypium barbadense. PeerJ 2022; 10:e14236. [PMID: 36275460 PMCID: PMC9586078 DOI: 10.7717/peerj.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023] Open
Abstract
Background PIN proteins are an important class of auxin polar transport proteins that play an important regulatory role in plant growth and development. However, their characteristics and functions have not been identified in Gossypium barbadense. Methods PIN family genes were identified in the cotton species G. barbadense, Gossypium hirsutum, Gossypium raimondii, and Gossypium arboreum, and detailed bioinformatics analyses were conducted to explore the roles of these genes in G. barbadense using transcriptome data and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) technology. Functional verification of the genes was performed using virus-induced gene silencing (VIGS) technology. Results A total of 138 PIN family genes were identified in the four cotton species; the genes were divided into seven subgroups. GbPIN gene family members were widely distributed on 20 different chromosomes, and most had repeated duplication events. Transcriptome analysis showed that some genes had differential expression patterns in different stages of fiber development. According to 'PimaS-7' and '5917' transcript component association analysis, the transcription of five genes was directly related to endogenous auxin content in cotton fibers. qRT-PCR analysis showed that the GbPIN7 gene was routinely expressed during fiber development, and there were significant differences among materials. Transient silencing of the GbPIN7 gene by VIGS led to significantly higher cotton plant growth rates and significantly lower endogenous auxin content in leaves and stems. This study provides comprehensive analyses of the roles of PIN family genes in G. barbadense and their expression during cotton fiber development. Our results will form a basis for further PIN auxin transporter research.
Collapse
Affiliation(s)
- Yilei Long
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Quanjia Chen
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yanying Qu
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Pengfei Liu
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yang Jiao
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yongsheng Cai
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Xiaojuan Deng
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Kai Zheng
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China,Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China,Postdoctoral Research Station, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
4
|
Molecular Regulation of Cotton Fiber Development: A Review. Int J Mol Sci 2022; 23:ijms23095004. [PMID: 35563394 PMCID: PMC9101851 DOI: 10.3390/ijms23095004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cotton (Gossypium spp.) is an economically important natural fiber crop. The quality of cotton fiber has a substantial effect on the quality of cotton textiles. The identification of cotton fiber development-related genes and exploration of their biological functions will not only enhance our understanding of the elongation and developmental mechanisms of cotton fibers but also provide insights that could aid the cultivation of new cotton varieties with improved fiber quality. Cotton fibers are single cells that have been differentiated from the ovule epidermis and serve as a model system for research on single-cell differentiation, growth, and fiber production. Genes and fiber formation mechanisms are examined in this review to shed new light on how important phytohormones, transcription factors, proteins, and genes linked to fiber development work together. Plant hormones, which occur in low quantities, play a critically important role in regulating cotton fiber development. Here, we review recent research that has greatly contributed to our understanding of the roles of different phytohormones in fiber development and regulation. We discuss the mechanisms by which phytohormones regulate the initiation and elongation of fiber cells in cotton, as well as the identification of genes involved in hormone biosynthetic and signaling pathways that regulate the initiation, elongation, and development of cotton fibers.
Collapse
|