1
|
Xue L, Xu J, Xiao P, Jiang Y, Lin Y, Feng C, Jin Y, Zhou Z, Wang G, Lu D. Perfluorooctane sulfonate (PFOS) induced bone loss by inhibiting FoxO1-mediated defense against oxidative stress in osteoblast. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117524. [PMID: 39675079 DOI: 10.1016/j.ecoenv.2024.117524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Exposure to perfluorooctane sulfonate (PFOS) has been associated with lower bone density and the occurrence of osteoporosis in human studies, but the effects and mechanisms of PFOS induces bone loss is not well understood. Our research is aimed at examining the effects of PFOS on osteoblastic activity and investigating the toxicological mechanisms of PFOS-induced bone loss. Cell proliferation, ALP activity, bone nodule formation, ROS levels, and cell apoptosis were assessed after treating osteoblasts with different concentrations of PFOS. Through transcriptome analysis, the differentially expressed genes (DEGs) were screened and the biofunctions were elucidated by Kyoto Encyclopedia of Genes and Genomes (KEGG) and The Gene Set Enrichment Analysis (GSEA). Vation of important genes and protein expression was accomplished using RT-PCR and Western blot methods, respectively. The results show that PFOS can reduce bone formation markers and improve oxidative stress and cell apoptosis. The DEGs in PFOS-treated groups were involved in multiple pathways, including FoxO, HIF-1, Rap1, Hippo, and sphingolipid signaling. FoxO1 was validated as the key gene which regulates osteogenic differentiation and redox status. Our findings suggest that PFOS reduces bone formation through FoxO1-mediated oxidative stress and apoptosis, as well as inhibition of the OPG/RANKL and FoxO1/β-catenin pathways. It will be beneficial for early intervention or treatment of PFOS-induced bone loss, highlighting the importance of regulatory measures to limit human exposure to PFOS.
Collapse
Affiliation(s)
- Liming Xue
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jiale Xu
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Ping Xiao
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Yiping Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yuanjie Lin
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Chao Feng
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Yu'e Jin
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Zhijun Zhou
- School of Public Health, Fudan University, Shanghai 200032, China
| | - Guoquan Wang
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Dasheng Lu
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| |
Collapse
|
2
|
Liu G, Wang Z, Li X, Yu P, Ji W, Wu L, Jiang H, Xu S, Liu J. Protective effects of Gumibao recipe on glucocorticoid-included bone microcirculatory endothelial cell injury and the underlying mechanism. Int Immunopharmacol 2024; 142:112989. [PMID: 39217879 DOI: 10.1016/j.intimp.2024.112989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE To investigate the protective effects of Gumibao recipe on glucocorticoid-included bone microcirculatory endothelial cell (BMEC) injury, and elucidate the possible underlying mechanism. METHODS BMECs were treated with different concentrations of hydrocortisone at different time points, and the viability as well as migration of BMECs were evaluated; furthermore, the release of LDH, levels of VEGF, PAI-1, t-PA, and the content of NO by BMECs have been evaluated by commercially available kits; moreover, the expressions of eNOS, p-PI3K, p-Akt and p-mTOR in BMECs were examined by WB methods. Next, hydrocortisone treated BMECs were co-treated with Gumibao recipe, and the viability, migration and autophagy of BMECs were evaluated. RESULTS 0.2 mg/ml and 0.3 mg/ml hydrocortisone significantly decreased viability and migration ability of BMECs, and also impeded the endothelial function of BMECs by decreasing the levels of VEGF, t-PA, the content of NO, and increasing the level of PAI-1. Gumibao medicated serum markedly increased the viability and migration of BMECs, and also increased the levels of VEGF, t-PA, the content of NO, meanwhile decreased the level of PAI-1 in 0.3 mg/ml hydrocortisone treated BMECs; moreover, glucocorticoids inhibited the autophagy of BMECs, and Gumibao recipe significantly increased the autophagy of BMECs; meanwhile, autophagy inhibitor 3-MA partially blocked the protective effects of Gumibao recipe. Finally, gumibao recipe partially abrogated the inhibitory effects of hydrocortisone on the activation of PI3K/Akt/mTOR singling, and these effects were further counteracted by PI3K and mTOR inhibitor NVP-BEZ235. CONCLUSIONS We reported for the first time the protective effects of Gumibao recipe on glucocorticoid-included BMECs injury, and the possible underlying mechanism may be regulating the autophagy of BMECs via PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Guanhong Liu
- Orthopedics and Traumatology Department, Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215000, China
| | - Zhiqiang Wang
- Orthopedics and Traumatology Department, Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215000, China
| | - Xiaochun Li
- Orthopedics and Traumatology Department, Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215000, China
| | - Pengfei Yu
- Orthopedics and Traumatology Department, Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215000, China
| | - Wanbo Ji
- Orthopedics and Traumatology Department, Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215000, China
| | - Liming Wu
- Orthopedics and Traumatology Department, Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215000, China
| | - Hong Jiang
- Orthopedics and Traumatology Department, Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215000, China
| | - Suliang Xu
- Orthopedics and Traumatology Department, Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215000, China
| | - Jintao Liu
- Orthopedics and Traumatology Department, Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215000, China.
| |
Collapse
|
3
|
Jin R, Li C, Yang Y, Xie J. AEBP1 restores osteoblastic differentiation under dexamethasone treatment by activating PI3K/AKT signalling. Clin Exp Pharmacol Physiol 2024; 51:e13923. [PMID: 39358837 DOI: 10.1111/1440-1681.13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/23/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Adipocyte enhancer-binding protein 1 (AEBP1) is closely implicated in osteoblastic differentiation and bone fracture; this research aimed to investigate the effect of AEBP1 on restoring osteoblastic differentiation under dexamethasone (Dex) treatment, and its interaction with the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. Pre-osteoblastic MC3T3-E1 cells were cultured in osteogenic medium and treated by Dex to mimic steroid-induced osteonecrosis cellular model. They were then further transfected with control or AEBP1-overexpressed lentiviral vectors. Finally, cells were treated with the PI3K inhibitor LY294002, with or without AEBP1-overexpressed lentiviral vectors. AEBP1 expression showed a downward trend in MC3T3-E1 cells under Dex treatment in a dose-dependent manner. AEBP1-overexpressed lentiviral vectors increased relative cell viability, alkaline phosphatase (ALP) staining, Alizarin red staining and osteoblastic differentiation markers including osteocalcin (OCN), osteopontin (OPN), collagen type I alpha 1 (COL1A1), runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein 2 (BMP2), but decreased cell apoptosis rate in MC3T3-E1 cells under Dex treatment; besides, AEBP1-overexpressed lentiviral vectors positively regulated p-PI3K and p-AKT expressions. Furthermore, LY294002 treatment decreased relative cell viability, Alizarin red staining, osteoblastic differentiation markers including OCN, OPN, RUNX2 and BMP, increased cell apoptosis rate and did not affect ALP staining in MC3T3-E1 cells under Dex treatment; meanwhile, LY294002 treatment weakened the effect of AEBP1 overexpression vectors on the above cell functions. AEBP1 restores osteoblastic differentiation under Dex treatment by activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Rilong Jin
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Li
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yute Yang
- Department of Orthopedics Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Xie
- Department of Orthopedics Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Wu T, Shi W, Zhou Y, Guo S, Tian H, Jiang Y, Li W, Wang Y, Li T. Identification and validation of endoplasmic reticulum stress-related genes in patients with steroid-induced osteonecrosis of the femoral head. Sci Rep 2024; 14:21634. [PMID: 39284931 PMCID: PMC11405670 DOI: 10.1038/s41598-024-72941-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH) is a debilitating condition caused by long-term corticosteroid use, leading to impaired blood flow and bone cell death. The disruption of cellular processes and promotion of apoptosis by endoplasmic reticulum stress (ERS) is implicated in the pathogenesis of SONFH. We identified ERS-associated genes in SONFH and investigated their potential as therapeutic targets. We analysed the GSE123568 GEO dataset to identify differentially expressed genes (DEGs) related to ERS in SONFH. We conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, identified hub genes by protein-protein interaction (PPI) analyses, and evaluated their functions by gene set enrichment analysis (GSEA). We constructed mRNA-miRNA networks, identified potential therapeutics, and assessed immune cell infiltration. We performed cross-validation using the GEO dataset GSE74089, qRT-PCR on clinical samples from patients with SONFH and controls, and a receiver operating characteristic (ROC) curve analysis to assess the diagnostic performance of the hub genes. We identified 195 ERS-related genes in SONFH, which were primarily involved in oxidative stress, immune responses, and metabolic pathways. The PPI network suggested CXCL8, STAT3, IL1B, TLR4, PTGS2, TLR2, CASP1, CYBB, CAT, and HOMX1 to be key hub genes, which were shown by GSEA to be involved in biological pathways related to metabolism, immune modulation, and cellular integrity. We also identified 261 microRNAs (miRNAs) as well as drugs such as dibenziodolium and N-acetyl-L-cysteine that modulated inflammatory responses in SONFH. Twenty-two immune cell subtypes showed significant correlations, such as a positive correlation between activated mast cells and Tregs, and patients with SONFH had fewer dendritic cells than controls. The hub genes CYBB and TLR4 showed significant correlations with M1 macrophages and CD8 T cells, respectively. Cross-validation and qRT-PCR confirmed the upregulation of STAT3, IL1B, TLR2, and CASP1 in patients with SONFH, validating the bioinformatics findings. An ROC curve analysis confirmed the diagnostic potential of the hub genes. The top 10 hub genes show promise as ERS-related diagnostic biomarkers for SONFH. We discovered that 261 miRNAs, including hsa-miR-23, influence these genes and identified potential therapeutics such as dibenziodolium and simvastatin. Immune profiling indicated altered immune functions in SONFH, with significant correlations among immune cell types. Validation confirmed the upregulation of STAT3, IL1B, TLR2 and CASP1, which had diagnostic potential. The findings suggest potential diagnostic markers and therapeutic targets for SONFH.
Collapse
Affiliation(s)
- Tingyu Wu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Weipeng Shi
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Yinxue Zhou
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Sijia Guo
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Hua Tian
- Department of Neurological Rehabilitation, Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, 266003, China
| | - Yaping Jiang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Weiyan Li
- Department of Emergency Surgery and Joint Surgery, Qingdao Third People's Hospital, Qingdao, 266003, China
| | - Yingzhen Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Tao Li
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China.
| |
Collapse
|
5
|
Shi J, Chen L, Wang X, Ma X. TRIM21 silencing inhibits the apoptosis and expedites the osteogenic differentiation of dexamethasone‑induced MC3T3‑E1 cells by activating the Keap1/Nrf2 pathway. Exp Ther Med 2024; 27:213. [PMID: 38590560 PMCID: PMC11000457 DOI: 10.3892/etm.2024.12502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/13/2024] [Indexed: 04/10/2024] Open
Abstract
Steroid-induced osteonecrosis of the femoral head (ONFH) is a serious complication caused by long-term or excessive use of glucocorticoids. The present study aimed to ascertain the effects of tripartite motif-containing protein 21 (TRIM21) on the process of steroid-induced ONFH and its hidden action mechanism. TRIM21 expression in dexamethasone (Dex)-treated mouse MC3T3-E1 preosteoblast cells was examined using reverse transcription-quantitative PCR and western blotting. The Cell Counting Kit-8 (CCK-8) method and lactate dehydrogenase release assay were used to respectively measure cell viability and injury. Flow cytometry analysis was used to assay cell apoptosis. Caspase 3 activity was evaluated using a specific assay, while alkaline phosphatase and Alizarin red S staining were used to evaluate osteogenesis. 2,7-dichloro-dihydrofluorescein diacetate fluorescence probe was used to estimate reactive oxygen species generation. Specific assay kits were used to appraise oxidative stress levels. In addition, the expression of apoptosis-, osteogenic differentiation- and Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling-associated proteins was assessed using western blotting. In Nrf2 inhibitor (ML385)-pretreated MC3T3-E1 cells exposed to Dex, cell apoptosis, osteogenesis and oxidative stress were detected again as aforementioned. Results revealed that TRIM21 expression was raised in Dex-induced MC3T3-E1 cells and TRIM21 deletion improved the viability and osteogenic differentiation, whereas it hampered the oxidative stress and apoptosis in MC3T3-E1 cells with Dex induction. In addition, silencing of TRIM21 activated Keap1/Nrf2 signaling. Moreover, ML385 partially abrogated the effects of TRIM21 depletion on the oxidative stress, apoptosis and osteogenic differentiation in MC3T3-E1 cells exposed to Dex. In conclusion, TRIM21 silencing might activate Keap1/Nrf2 signaling to protect against steroid-induced ONFH.
Collapse
Affiliation(s)
- Jiaqi Shi
- Department of Orthopedics, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Li Chen
- Department of Orthopedics, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Xu Wang
- Department of Orthopedics, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Xin Ma
- Department of Orthopedics, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
6
|
Luo D, Liu H, Liang X, Yan W, Ding C, Hu C, Yan D, Li J, Wu J. Analysis of the Potential Angiogenic Mechanisms of BuShenHuoXue Decoction against Osteonecrosis of the Femoral Head Based on Network Pharmacology and Experimental Validation. Orthop Surg 2024; 16:700-717. [PMID: 38296807 PMCID: PMC10925519 DOI: 10.1111/os.13970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 02/02/2024] Open
Abstract
OBJECTIVE Osteonecrosis of the femoral head (ONFH) is a common orthopedic disease with a high disability rate. The clinical effect of BuShenHuoXue decoction (BSHX) for ONFH is satisfactory. We aimed to elucidate the potential angiogenic mechanisms of BSHX in a rat femoral osteonecrosis model and bone marrow mesenchymal stem cells (BMSCs). METHODS With in vivo experiments, we established the steroid-induced osteonecrosis of the femoral head (SONFH) model using Sprague-Dawley (SD) rats (8-week-old). The rats were randomly divided into five group of 12 rats each and given the corresponding interventions: control, model (gavaged with 0.9% saline), BSHX low-, medium- and high-dose groups (0.132 3, 0.264 6, and 0.529 2 g/mL BSHX solution by gavage). After 12 weeks, haematoxylin and eosin (H&E) staining was preformed to evaluate rat osteonecrosis. the expression of angiogenic factors (CD31, VEGFA, KDR, VWF) in rat femoral head was detected by immunohistochemistry, qPCR and western blotting. In cell experiment, BMSCs were isolated and cultured in the femoral bone marrow cavity of 4-week-old SD rats. BMSCs were randomly divided into eight groups and intervened with different doses of BSHX-containing serum and glucocorticoids: control group (CG); BSHX low-, medium-, and high-dose groups (CG + 0.661 5, 1.323, and 2.646 g/kg BSHX gavage rat serum); dexamethasone (Dex) group; and Dex + BSHX low-, medium-, and high-dose groups (Dex + 0.661 5, 1.323, and 2.646 g/kg BSHX gavaged rat serum), the effects of BSHX-containing serum on the angiogenic capacity of BMSCs were examined by qPCR and Western blotting. A co-culture system of rat aortic endothelial cells (RAOECs) and BMSCs was then established. Migration and angiogenesis of RAOECs were observed using angiogenesis and transwell assay. Identification of potential targets of BSHX against ONFH was obtained using network pharmacology. RESULTS BSHX upregulated the expression of CD31, VEGFA, KDR, and VWF in rat femoral head samples and BMSCs (p < 0.05, vs. control group or model group). Different concentrations of BSHX-containing serum significantly ameliorated the inhibition of CD31, VEGFA, KDR and VWF expression by high concentrations of Dex. BSHX-containing serum-induced BMSCs promoted the migration and angiogenesis of RAOECs, reversed to some extent the adverse effect of Dex on microangiogenesis in RAOECs, and increased the number of microangiogenic vessels. Furthermore, we identified VEGFA, COL1A1, COL3A1, and SPP1 as important targets of BSHX against ONFH. CONCLUSION BSHX upregulated the expression of angiogenic factors in the femoral head tissue of ONFH model rats and promoted the angiogenic capacity of rat RAOECs and BMSCs. This study provides an important basis for the use of BSHX for ONFH prevention and treatment.
Collapse
Affiliation(s)
- Di Luo
- Shandong University of Traditional Chinese MedicineJinanChina
- Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Hao Liu
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Xue‐zhen Liang
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Wei Yan
- Shandong University of Traditional Chinese MedicineJinanChina
- Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Chou Ding
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Cheng‐bo Hu
- Shandong University of Traditional Chinese MedicineJinanChina
| | - De‐zhi Yan
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Jin‐song Li
- Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Ji‐biao Wu
- Shandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
7
|
Tsubosaka M, Maruyama M, Lui E, Kushioka J, Toya M, Gao Q, Shen H, Li X, Chow SKH, Zhang N, Yang YP, Goodman SB. Preclinical models for studying corticosteroid-induced osteonecrosis of the femoral head. J Biomed Mater Res B Appl Biomater 2024; 112:e35360. [PMID: 38247252 DOI: 10.1002/jbm.b.35360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 01/23/2024]
Abstract
Nontraumatic osteonecrosis of the femoral head (ONFH) is a refractory condition that commonly results in femoral head collapse and degenerative arthritis of the hip. In the early stages, surgical procedures for hip preservation, including core decompression (CD), have been developed to prevent progressive collapse of the femoral head. Optimization of bone regeneration and biological augmentation may further enhance the therapeutic efficacy of CD for ONFH. Thus, combining CD with cell-based therapy has recently been proposed. In fact, patients treated with cell-based therapy using autologous bone marrow concentrate demonstrate improved survivorship of the femoral head, compared with conventional CD alone. Preclinical research studies to investigate adjunctive therapies for CD often utilize the rabbit model of corticosteroid-induced ONFH. Mesenchymal stem cells (MSCs) are known to promote osteogenesis and angiogenesis, and decrease inflammation in bone. Local drug delivery systems have the potential to achieve targeted therapeutic effects by precisely controlling the drug release rate. Scaffolds can provide an osteoconductive structural framework to facilitate the repair of osteonecrotic bone tissue. We focused on the combination of both cell-based and scaffold-based therapies for bone tissue regeneration in ONFH. We hypothesized that combining CD and osteoconductive scaffolds would provide mechanical strength and structural cell guidance; and that combining CD and genetically modified (GM) MSCs to express relevant cytokines, chemokines, and growth factors would promote bone tissue repair. We developed GM MSCs that overexpress the anti-inflammatory, pro-reconstructive cytokines platelet-derived growth factor-BB to provide MSCs with additional benefits and investigated the efficacy of combinations of these GM MSCs and scaffolds for treatment of ONFH in skeletally mature male New Zealand white rabbits. In the future, the long-term safety, efficacy, durability, and cost-effectiveness of these and other biological and mechanical treatments must be demonstrated for the patients affected by ONFH.
Collapse
Affiliation(s)
- Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Elaine Lui
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Material Science and Engineering, Stanford University School of Medicine, Stanford, California, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, California, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
8
|
Liu X, Xie Y, Gao W, Zhan L, Hu L, Zuo L, Li Y. Experimental study of dexamethasone-loaded hollow hydroxyapatite microspheres applied to direct pulp capping of rat molars. Front Endocrinol (Lausanne) 2023; 14:1192420. [PMID: 37600685 PMCID: PMC10435764 DOI: 10.3389/fendo.2023.1192420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Background Dexamethasone (DEX) exerts anti-inflammatory and osteogenic effects. Hydroxyapatite is commonly used in bone repair due to its osteoconductivity, osseointegration, and osteogenesis induction. Hollow hydroxyapatite (HHAM) is often used as a drug carrier. Objective This study aimed to investigate the histological responses of exposed dental pulp when dexamethasone-loaded nanohydroxyapatite microspheres (DHHAM) were used as a direct capping agent. Methods Cavities were created in the left maxillary first molar of Wistar rats and filled with Dycal, HHAM, and DHHAM. No drug was administered to the control group. The rats were sacrificed at 1, 2, and 4 weeks after the procedure. The molars were extracted for fixation, demineralization, dehydration, embedding, and sectioning. H&E staining was performed to detect the formation of reparative dentin. H&E and CD45 immunohistochemical staining were performed to detect pulp inflammation. Immunohistochemical staining was performed to assess the expressions of dentin matrix protein 1 (DMP-1), interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β. Results The results of H&E and CD45 immunohistochemical staining showed that the degree of inflammation in the DHHAM group was less than that in the Control and HHAM groups at 1, 2, and 4 weeks after capping of the rat molar teeth (p<0.01). The H&E staining showed that the percentage of reparative dentin formed in the DHHAM group was higher than that in the Control, HHAM (p<0.001), and Dycal groups (p<0.01) at 1 and 2 weeks, and was significantly higher than that in the Control group (p<0.001) and the HHAM group (p<0.01) at 4 weeks. The immunohistochemical staining showed a lower range and intensity of expression of IL-1β, IL-6, and TNF-α and high expression levels of DMP-1 in the DHHAM group at 1, 2, and 4 weeks after pulp capping relative to the Control group. Conclusions DHHAM significantly inhibited the progression of inflammation and promoted reparative dentin formation.
Collapse
Affiliation(s)
- Xiaoli Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yuandong Xie
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Weijia Gao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Luoning Zhan
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Ling Hu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Linjing Zuo
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yi Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Li H, Zhang Y, Hao Y, Xu P, Wang X, Zhu B, Lu C, Xu K. Proanthocyanidins Inhibit Osteoblast Apoptosis via the PI3K/AKT/Bcl-xL Pathway in the Treatment of Steroid-Induced Osteonecrosis of the Femoral Head in Rats. Nutrients 2023; 15:nu15081936. [PMID: 37111155 PMCID: PMC10140830 DOI: 10.3390/nu15081936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Steroid-induced osteonecrosis of the femoral head (SONFH) is a common clinical disease caused by massive or prolonged use of steroids. Its pathogenesis is unclear, but its incidence is increasing annually. It is characterized by an insidious and rapid onset, and high disability rate, causing a great burden on patients' daily life. Therefore, clarifying its pathogenesis and providing early and effective treatment for steroid osteonecrosis is important. METHODS In vivo, we used methylprednisolone (MPS) to construct a SONFH rat model and employed Mirco-ct, Hematoxylin and eosin (H&E) staining, and TdT-mediated dUTP nick end labeling (TUNEL) staining analysis to evaluate the therapeutic effects of proanthocyanidins (PACs). Network pharmacology analysis was conducted to mine targets associated with femoral head necrosis, and PACs analyzed possible molecular mechanisms. In vitro, PACs were added at different doses after treatment of cells with dexamethasone (DEX), and human osteoblast-like sarcoma(MG-63) cell apoptosis was determined by Annexin V-FITC-PI. The mechanisms by which PACs regulate bone metabolism via the Phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)/Recombinant Human B-Cell Leukemia/Lymphoma 2 XL(Bcl-xL) axis were explored by Western blotting. RESULT In vivo studies showed that PACs prevented SONFH in rat model. The PI3K/AKT/Bcl-xL signaling pathway was selected by network pharmacology approach; in vitro studies showed that proanthocyanidin-activated AKT and Bcl-xL inhibited osteoblast apoptosis. CONCLUSIONS PACs can inhibit excessive osteoblast apoptosis in SONFH via the PI3K/AKT/Bcl-xL signaling axis and have potential therapeutic effects.
Collapse
Affiliation(s)
- Hui Li
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an 710054, China
- Department of Traditional Chinese and Western Medicine, First Clinical School of Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China
| | - Yufei Zhang
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an 710054, China
- Department of Traditional Chinese and Western Medicine, First Clinical School of Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China
| | - Yangquan Hao
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an 710054, China
| | - Peng Xu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an 710054, China
| | - Xingyu Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100000, China
| | - Chao Lu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an 710054, China
| | - Ke Xu
- Department of Traditional Chinese and Western Medicine, First Clinical School of Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China
| |
Collapse
|
10
|
Identification and Validation of Potential Ferroptosis-Related Genes in Glucocorticoid-Induced Osteonecrosis of the Femoral Head. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020297. [PMID: 36837498 PMCID: PMC9962586 DOI: 10.3390/medicina59020297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Background and Objectives. Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a serve complication of long-term administration of glucocorticoids. Previous experimental studies have shown that ferroptosis might be involved in the pathological process of GIONFH. The purpose of this study is to identify the ferroptosis-related genes and pathways of GIONFH by bioinformatics to further illustrate the mechanism of ferroptosis in SONFH through bioinformatics analysis. Materials and Methods. The GSE123568 mRNA expression profile dataset, including 30 GIONFH samples and 10 non-GIONFH samples, was downloaded from the Gene Expression Omnibus (GEO) database. Ferroptosis-related genes were obtained from the FerrDb database. First, differentially expressed genes (DEGs) were identified between the serum samples from GIONFH cases and those from controls. Ferroptosis-related DEGs were obtained from the intersection of ferroptosis-related genes and DEGs. Only ferroptosis DEGs were used for all analyses. Then, we conducted a Kyoto encyclopedia of genome (KEGG) and gene ontology (GO) pathway enrichment analysis. We constructed a protein-protein interaction (PPI) network to screen out hub genes. Additionally, the expression levels of the hub genes were validated in an independent dataset GSE10311. Results. A total of 27 ferroptosis-related DEGs were obtained between the peripheral blood samples of GIONFH cases and non-GIONFH controls. Then, GO, and KEGG pathway enrichment analysis revealed that ferroptosis-related DEGs were mainly enriched in the regulation of the apoptotic process, oxidation-reduction process, and cell redox homeostasis, as well as HIF-1, TNF, FoxO signaling pathways, and osteoclast differentiation. Eight hub genes, including TLR4, PTGS2, SNCA, MAPK1, CYBB, SLC2A1, TXNIP, and MAP3K5, were identified by PPI network analysis. The expression levels of TLR4, TXNIP and MAP3K5 were further validated in the dataset GSE10311. Conclusion. A total of 27 ferroptosis-related DEGs involved in GIONFH were identified via bioinformatics analysis. TLR4, TXNIP, and MAP3K5 might serve as potential biomarkers and drug targets for GIONFH.
Collapse
|
11
|
Study on the Mechanism of Mesaconitine-Induced Hepatotoxicity in Rats Based on Metabonomics and Toxicology Network. Toxins (Basel) 2022; 14:toxins14070486. [PMID: 35878224 PMCID: PMC9322933 DOI: 10.3390/toxins14070486] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
Mesaconitine (MA), one of the main diterpenoid alkaloids in Aconitum, has a variety of pharmacological effects, such as analgesia, anti-inflammation and relaxation of rat aorta. However, MA is a highly toxic ingredient. At present, studies on its toxicity are mainly focused on the heart and central nervous system, and there are few reports on the hepatotoxic mechanism of MA. Therefore, we evaluated the effects of MA administration on liver. SD rats were randomly divided into a normal saline (NS) group, a low-dose MA group (0.8 mg/kg/day) and a high-dose MA group (1.2 mg/kg/day). After 6 days of administration, the toxicity of MA on the liver was observed. Metabolomic and network toxicology methods were combined to explore the effect of MA on the liver of SD rats and the mechanism of hepatotoxicity in this study. Through metabonomics study, the differential metabolites of MA, such as L-phenylalanine, retinyl ester, L-proline and 5-hydroxyindole acetaldehyde, were obtained, which involved amino acid metabolism, vitamin metabolism, glucose metabolism and lipid metabolism. Based on network toxicological analysis, MA can affect HIF-1 signal pathway, MAPK signal pathway, PI3K-Akt signal pathway and FoxO signal pathway by regulating ALB, AKT1, CASP3, IL2 and other targets. Western blot results showed that protein expression of HMOX1, IL2 and caspase-3 in liver significantly increased after MA administration (p < 0.05). Combined with the results of metabonomics and network toxicology, it is suggested that MA may induce hepatotoxicity by activating oxidative stress, initiating inflammatory reaction and inducing apoptosis.
Collapse
|