1
|
Phung TXB, Le TPQ, Da Le N, Hoang TTH, Nguyen TMH, Rochelle-Newall E, Nguyen TAH, Duong TT, Pham TMH, Nguyen TD. Metal contamination, their ecological risk, and relationship with other variables in surface sediments of urban rivers in a big city in Asia: case study of Hanoi, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22362-22379. [PMID: 38409380 DOI: 10.1007/s11356-024-32549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Urban rivers are significantly impacted by anthropogenic pressure. This study presents the updated assessment of the concentrations of 11 metals and other variables (pH, total organic carbon (TOC) and nutrients (total nitrogen, total phosphorus, and total silica)) in the sediments of four urban rivers in inner Hanoi city, Vietnam, during the period 2020-2022. The mean concentrations of Fe, Zn, As, and Cr were higher than the permissible values of the Vietnam National technical regulation on the surface sediment quality. Moreover, Zn and Cr were at the severe effect level of the US EPA guidelines for sediment quality. The calculation of pollution indices (Igeo and EF) demonstrated that Mn, Ni, and Fe were from natural sources whereas other metals were from both anthropogenic and natural sources. The ecological risk index revealed that metals in Hanoi riverine sediments were classified at considerable ecological risk. High values of metals, TOC, and nutrients in the sediments of these urban rivers mostly originate from the accumulation of untreated urban wastewater that is enhanced by low river discharge. Our results may provide scientific base for better management decisions to ensure environmental protection and sustainable development of Hanoi city.
Collapse
Affiliation(s)
| | - Thi Phuong Quynh Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam.
| | - Nhu Da Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Thi Thu Ha Hoang
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Thi Mai Huong Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Emma Rochelle-Newall
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Sorbonne Université, Université Paris-Est Créteil, IRD, CNRS, INRA, Paris, France
| | - Thi Anh Huong Nguyen
- Department of Analytical Chemistry, Faculty of Chemistry, VNU University of Science, Vietnam National University-Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Thi Thuy Duong
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Thi Mai Huong Pham
- Hanoi University of Industry, 298, Cau Dien, Bac Tu Liem, Hanoi, Vietnam
| | - Tien Dat Nguyen
- Center for High Technology Research and Development, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
2
|
Yao X, Wang Z, Liu W, Zhang Y, Wang T, Li Y. Pollution in river tributaries restricts the water quality of ecological water replenishment in the Baiyangdian watershed, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51556-51570. [PMID: 36810822 DOI: 10.1007/s11356-023-25957-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Natural rivers often have complex water network structures, and the continuous water inflow from tributaries may have crucial impacts on the water quality of ecological water replenishment in the mainstream. This study selected two main inflow rivers of the largest lake in Hebei Province (Baiyangdian), the Fu River and Baigou River, to explore the influence of tributaries on the quality changes of ecological replenishment water in the mainstreams. In December 2020 and 2021, water samples were collected along the two river routes, and eutrophic parameters and heavy metals were determined. The results showed that the tributaries of the Fu River were all severely polluted. With the inflows of the tributaries, the comprehensive pollution index of eutrophication greatly increased along the replenished water route of the Fu River, and the replenished water in the lower reaches of the Fu River mainstream was mostly considered moderate to heavy pollution. Whereas, because the Baigou River's tributaries were only moderately polluted, the water quality in the Baigou River's replenished water was mostly better than moderate pollution. Due to the slight pollution of heavy metals in the tributaries, the replenished water in both the Fu and Baigou Rivers did not show any impact from heavy metal pollution. Correlation and principal component analysis indicated that the main sources of serious eutrophic pollution in the tributaries of the Fu and Baigou Rivers were related to domestic sewage, industrial wastewater, plant decay, and sediment release. This non-point source pollution then caused the decline in the quality of the replenished water in the mainstreams. This study exposed a long-standing but neglected problem in ecological water replenishment and provided a scientific foundation for conducting better water management to improve the inland water environment.
Collapse
Affiliation(s)
- Xu Yao
- College of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
- Hebei Urban Forest Health Technology Innovation Center, Baoding, Hebei Province, China
| | - Zheng Wang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
- Hebei Urban Forest Health Technology Innovation Center, Baoding, Hebei Province, China
| | - Wei Liu
- Baoding Sewerage Corporation, Baoding, Hebei Province, China
| | - Yao Zhang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Tianhe Wang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Yuling Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China.
- Hebei Urban Forest Health Technology Innovation Center, Baoding, Hebei Province, China.
| |
Collapse
|