1
|
Zhang K, Lin G, Nie Z, Jin S, Bing X, Li Z, Li M. TRIM38 suppresses migration, invasion, metastasis, and proliferation in non-small cell lung cancer (NSCLC) via regulating the AMPK/NF-κB/NLRP3 pathway. Mol Cell Biochem 2024; 479:2069-2079. [PMID: 37566200 DOI: 10.1007/s11010-023-04823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
Accumulating data have revealed the pivotal function of tripartite motif protein 38 (TRIM38) in tumors. In view of this, this investigation aims to explore the function and potential mechanism of TRIM38 in non-small cell lung cancer (NSCLC). A xenotypic tumor model was established in vivo by subcutaneously injecting NSCLC cells (2 × 106 cells) in tail vein of each mouse. Relative expression of TRIM38 mRNA was detected via quantitative real-time polymerase chain reaction (qRT-PCR). For exploring the role of TRIM38 in vivo and in vitro, mice or NSCLC cells were divided into two groups: the vector group and the TRIM38 overexpression group. Also, protein expression levels of TRIM38, Vimentin, E-cadherin, and N-cadherin were determined using western blotting and immunohistochemistry staining. Tumor nodules of mouse lung tissues were assessed via performing H&E staining. Moreover, proliferation of NSCLC cells was evaluated through colony formation and CCK-8 assays. Further, migration and invasion of NSCLC cells were assessed through wound healing and transwell assays. Protein levels of pathway-related proteins including p-p65, p65, IκB, p-IκB, p-AMPK, AMPK, and NLRP3 were examined through western blotting analysis. Tumor lung tissues of mice and NSCLC cells showed low protein and mRNA expression of TRIM38. Functionally, up-regulation of TRIM38 reduced the number of tumor nodules and suppressed epithelial-to-mesenchymal transition (EMT) in lung tissues of mice. Furthermore, up-regulation of TRIM38 in NSCLC cells inhibited migration, invasion, EMT, and proliferation. With respect to the mechanism, in vivo experiments, the inhibitory effects of TRIM38 overexpression on tumor nodules, and EMT were reversed by AMPK inhibitor. In vitro experiments, TRIM38 overexpression caused down-regulation of p-IκB and p-p65 as well as up-regulation of p-AMPK. The inhibitory effects of TRIM38 overexpression on migration, proliferation, invasion, and EMT of NSCLC cells were reversed by overexpression of NLRP3. Concurrently, AMPK inhibitor enhanced the TRIM38-overexpressed NSCLC cell's abilities in migration, clone formation, invasion, and proliferation. TRIM38 regulated the AMPK/NF-κB/NLRP3 pathway to suppress the NSCLC's progression and development.
Collapse
Affiliation(s)
- Kaihua Zhang
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Guihu Lin
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Zhenkai Nie
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Shan Jin
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Xiaohan Bing
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Zhantao Li
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Mingru Li
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China.
| |
Collapse
|
2
|
Dong S, Xu G, Li X, Guo S, Bai J, Zhao J, Chen L. Exosomes Derived from Quercetin-Treated Bone Marrow Derived Mesenchymal Stem Cells Inhibit the Progression of Osteoarthritis Through Delivering miR-124-3p to Chondrocytes. DNA Cell Biol 2024; 43:85-94. [PMID: 38241502 DOI: 10.1089/dna.2023.0341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Abstract
Osteoarthritis (OA) is a chronic disease characterized by the progressive loss of cartilage and failure of the diarrheal joint. Quercetin has been reported to attenuate the development of OA. Bone marrow derived mesenchymal stem cell (BMSC)-derived exosomes are involved in OA progression. However, the role of BMSC-derived exosomes in quercetin-mediated progression of OA remains unclear. Western blotting and RT-qPCR were used to assess protein and mRNA levels, respectively. CCK8 assay was performed to assess cell viability, and cell apoptosis was assessed using flow cytometry. A dual-luciferase assay was performed to assess the relationship between miR-124-3p and TRAF6 expression. Furthermore, in vivo experiments were performed to test the function of exosomes derived from Quercetin-treated BMSCs in OA patients. IL-1β significantly inhibited the viability of chondrocytes, whereas the conditioned medium of Quercetin-treated BMSCs (BMSCsQUE-CM) reversed this phenomenon through exosomes. IL-1β notably upregulated MMP13 and ADAMT5 and reduced the expression of COL2A1 in chondrocytes, which were rescued by BMSCsQUE-CM. The effects of BMSCsQUE-CM on these three proteins were reversed in the absence of exosomes. Exosomes can be transferred from BMSCs to chondrocytes, and exosomes derived from Quercetin-treated BMSCs (BMSCsQue-Exo) can reverse the apoptotic effects of IL-1β on chondrocytes. The level of miR-124-3p in BMSCs was significantly upregulated by quercetin, and miR-124-3p was enriched in BMSCsQue-Exo. TRAF6 was identified as a direct target of miR-124-3p, and BMSCsQue-Exo abolished the IL-1β-induced activation of MAPK/p38 and NF-κB signaling. Furthermore, BMSCsQue-Exo significantly attenuated OA progression in vivo. Exosomes derived from Quercetin-treated BMSCs inhibited OA progression through the upregulation of miR-124-3p.
Collapse
Affiliation(s)
- Shiyu Dong
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Genrong Xu
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xiaoliang Li
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Shengjun Guo
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Jing Bai
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Jiyang Zhao
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Liming Chen
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
3
|
Chen X, Chen X. The Role of TRIM Proteins in Vascular Disease. Curr Vasc Pharmacol 2024; 22:11-18. [PMID: 38031766 DOI: 10.2174/0115701611241848231114111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
There are more than 80 different tripartite motifs (TRIM) proteins within the E3 ubiquitin ligase subfamily, including proteins that regulate intracellular signaling, apoptosis, autophagy, proliferation, inflammation, and immunity through the ubiquitination of target proteins. Studies conducted in recent years have unraveled the importance of TRIM proteins in the pathophysiology of vascular diseases. In this review, we describe the effects of TRIM proteins on vascular endothelial cells, smooth muscle cells, heart, and lungs. In particular, we discuss the potential mechanisms by which TRIMs regulate diseases and shed light on the potential therapeutic applications of TRIMs.
Collapse
Affiliation(s)
- Xinxin Chen
- Ophthalmology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, China
| | - Xiaolong Chen
- Ophthalmology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Yao X, Dong R, Hu S, Liu Z, Hu F, Cheng X, Wang X, Ma T, Tian S, Zhang XJ, Hu Y, Bai L, Li H, Zhang P. Tripartite motif 38 alleviates the pathological process of NAFLD/NASH by promoting TAB2 degradation. J Lipid Res 2023:100382. [PMID: 37116711 PMCID: PMC10394331 DOI: 10.1016/j.jlr.2023.100382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease worldwide, without any FDA-approved pharmacological intervention in clinic. The TRIM (tripartite motif-containing) family plays essential roles in innate immune and hepatic inflammation. TRIM38, as one of the important members in TRIM family, was largely reported to be involved in the regulation of innate immune and inflammatory responses. However, the functional roles of TRIM38 in NAFLD remains largely unknown. Here, the expression of TRIM38 was first detected in liver samples of both NAFLD mice model and patients diagnosed with NAFLD. We found TRIM38 expression was downregulated in NAFLD liver tissues compared with normal liver tissues. Genetic TRIM38 knockout in vivo showed that TRIM38 depletion deteriorated the HFD and HFHC diet-induced hepatic steatosis and HFHC diet-induced liver inflammation and fibrosis. In particular, we found that the effects of hepatocellular lipid accumulation and inflammation induced by palmitic acid and oleic acid (PA+OA) was aggravated by TRIM38 depletion but mitigated by TRIM38 overexpression in vitro. Mechanically, RNA-seq analysis demonstrated that TRIM38 ameliorated NASH progression by attenuating the activating of mitogen-activated protein kinase (MAPK) signaling pathway. We further found that TRIM38 interacted with TGF-β-activated kinase 1 (TAK1) binding protein 2 (TAB2) and promoted its protein degradation, thus inhibiting the TAK1-MAPK signal cascades. In summary, our study revealed that TRIM38 could suppress hepatic steatosis, inflammatory and fibrosis in NAFLD via promoting TAB2 degradation. TRIM38 could be a potential target for NAFLD treatment.
Collapse
Affiliation(s)
- Xinxin Yao
- Basic Medical School, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ruixiang Dong
- Basic Medical School, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Sha Hu
- Basic Medical School, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zhen Liu
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Fengjiao Hu
- Institute of Model Animal, Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xu Cheng
- Gannan Innovation and Translational Medicine Research Institute, Ganzhou, China; Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Xiaoming Wang
- Basic Medical School, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Tengfei Ma
- Department of Neurology, Huanggang Central Hospital, Huanggang, China
| | - Song Tian
- Basic Medical School, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Basic Medical School, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Yufeng Hu
- Gannan Innovation and Translational Medicine Research Institute, Ganzhou, China; Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Lan Bai
- Gannan Innovation and Translational Medicine Research Institute, Ganzhou, China; Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China.
| | - Hongliang Li
- Basic Medical School, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Gannan Innovation and Translational Medicine Research Institute, Ganzhou, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Peng Zhang
- Basic Medical School, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China.
| |
Collapse
|