1
|
Rondon R, Cárdenas CA, Cosseau C, Bergami E, Balbi T, Corsi I, González-Aravena M. Physiological and molecular effects of contaminants of emerging concerns of micro and nano-size in aquatic metazoans: overview and current gaps in Antarctic species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34457-6. [PMID: 39066941 DOI: 10.1007/s11356-024-34457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Although Antarctica is the most isolated continent on Earth, its remote location does not protect it from the impacts of human activities. Antarctic metazoans such as filter-feeding invertebrates are a crucial component of the Antarctic benthos. They play a key role in the benthic-pelagic carbon flux in coastal areas by filtering particles and planktonic organisms from the sediment-water interface. Due to their peculiar ecological niche, these organisms can be considered a wasp-waist in the ecosystem, making them highly sensitive to marine pollution. Recently, anthropogenic particles such as micro-nanoplastics and manufactured nanoparticles (MNP) have been classified as contaminants of emerging concern (CEC) due to their small size range, which also overlaps with the preferred particle size ingested by aquatic metazoans. Indeed, it has been demonstrated that some species such as Antarctic krill can ingest, transform, and release MNPs, making them newly bioavailable for other Antarctic filter-feeding organisms. Similarly, the production and use of anthropogenic MNP are rapidly increasing, leading to a growing presence of materials, such as nano-sized metal-oxides, in the environment. For these reasons, it is important to provide evidence of the adverse effects of such emerging contaminants at sub-lethal concentrations in environmental risk assessments. These contaminants may cause cascade effects with consequences not only on individuals but also at the community and ecosystem levels. In this review, we discuss the state-of-the-art knowledge on the physiological and molecular effects of anthropogenic MNP in Antarctic aquatic metazoans. We further highlight the importance of identifying early biomarkers using sessile metazoans as sentinels of environmental health.
Collapse
Affiliation(s)
- Rodolfo Rondon
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile.
| | - César A Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
- Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Céline Cosseau
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan "Via Domitia", Perpignan, France
| | - Elisa Bergami
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 213/D, Modena, Italy
| | - Teresa Balbi
- Department of Earth Environment & Life Sciences, University of Genoa, Genoa, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
2
|
Rondon R, Valdés C, Cosseau C, Bergami E, Cárdenas CA, Balbi T, Pérez-Toledo C, Garrido I, Perrois G, Chaparro C, Corre E, Corsi I, González-Aravena M. Transcriptomic responses of Antarctic clam Laternula elliptica to nanoparticles, at single and combined exposures reveal ecologically relevant biomarkers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116523. [PMID: 38850707 DOI: 10.1016/j.ecoenv.2024.116523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
In recent years micro- and nanoplastics and metal-oxide nanomaterials have been found in several environmental compartments. The Antarctic soft clam Laternula elliptica is an endemic Antarctic species having a wide distribution in the Southern Ocean. Being a filter-feeder, it could act as suitable bioindicator of pollution from nanoparticles also considering its sensitivity to various sources of stress. The present study aims to assess the impact of polystyrene nanoparticles (PS-NP) and the nanometal titanium-dioxide (n-TiO2) on genome-wide transcript expression of L. elliptica either alone and in combination and at two toxicological relevant concentrations (5 and 50 µg/L) during 96 h exposure. Transcript-target qRT-PCR was performed with the aim to identify suitable biomarkers of exposure and effects. As expected, at the highest concentration tested, the clustering was clearer between control and exposed clams. A total of 221 genes resulted differentially expressed in exposed clams and control ones, and 21 of them had functional annotation such as ribosomal proteins, antioxidant, ion transport (osmoregulation), acid-base balance, immunity, lipid metabolism, cell adhesion, cytoskeleton, apoptosis, chromatin condensation and cell signaling. At functional level, relevant transcripts were shared among some treatments and could be considered as general stress due to nanoparticle exposure. After applying transcript-target approach duplicating the number of clam samples, four ecologically relevant transcripts were revealed as biomarkers for PS-NP, n-TiO2 and their combination at 50 µg/L, that could be used for monitoring clams' health status in different Antarctic localities.
Collapse
Affiliation(s)
- Rodolfo Rondon
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile.
| | - Catalina Valdés
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile; The University of Texas Health Science Center at Houston, Houston, USA
| | - Céline Cosseau
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Elisa Bergami
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - César Antonio Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile; Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Teresa Balbi
- Department of Earth Environment & Life Sciences, University of Genoa, Genoa, Italy
| | | | - Ignacio Garrido
- Centro de Investigaciones Dinámica de Ecosistemas Marinos de Altas Latitudes, Valdivia, Chile; Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Garance Perrois
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile; Tropical & Subtropical Research Center, Korea Institute of Ocean Science and Technology, Jeju 63349, the Republic of Korea
| | - Cristian Chaparro
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Erwan Corre
- Faculté de Sciences, CNRS, FR 2424 CNRS, ABIMS, Station Biologique de Roscoff, Université Sorbonne, Roscoff, France
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
3
|
González-Aravena M, Rotunno C, Cárdenas CA, Torres M, Morley SA, Hurley J, Caro-Lara L, Pozo K, Galban C, Rondon R. Detection of plastic, cellulosic micro-fragments and microfibers in Laternula elliptica from King George Island (Maritime Antarctica). MARINE POLLUTION BULLETIN 2024; 201:116257. [PMID: 38518575 DOI: 10.1016/j.marpolbul.2024.116257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
It is generally acknowledged that microplastic pollutants are prevalent in ocean waters and sediments across a range of tropical, temperate, subpolar, and polar regions. The waters surrounding King George Island are significantly impacted by human activities, particularly those related to scientific stations, fishing, and tourism. Organisms, such as Laternula elliptica, can be used as environmental monitors due to the likelihood that they will bioaccumulate pollutants. The goal of this study was to quantify and identify plastic and cellulosic micro-fragments and microfibers present in the soft body of clams (n = 21), collected from Fildes Bay near sewage and wastewater discharges. Plastic and cellulose microfragments and microfibers were counted, and their compositions were determined using FT-IR. All 21 individuals sampled contained fragments and fibers, with a total of 900 items detected (42.86 ± 25.36 mean ± SD items per individual), or 1.82 items g.wet mass-1. 58 % of items were cellulose and 22 % plastic. Considering the plastic polymer compositions, 28.57 % were polyethylene terephthalate (PET), 21.43 % acrylic, 14.29 % high-density polyethylene (HDPE), 14.29 % Polypropylene (PP), 7.14 % ultra-high drawn polyethylene filament (UHMWPE), 7.14 % polyester and 7.14 % Polyethylene. The quantities and prevalence of MP in L. elliptica were higher than those found in other Antarctic marine species, and even in bivalves from populated regions of the world. Our work assessed the pollution status of L. elliptica near an effluent of wastewater plants and found that 95 % of individuals displayed MP and 100 % microfibers that could impact their population.
Collapse
Affiliation(s)
- Marcelo González-Aravena
- Departamento Científico, Instituto Antártico Chileno, Plaza Muñoz Gamero 1055, Punta Arenas, Chile
| | - Carmen Rotunno
- Departamento Científico, Instituto Antártico Chileno, Plaza Muñoz Gamero 1055, Punta Arenas, Chile; Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - César A Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Plaza Muñoz Gamero 1055, Punta Arenas, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago de Chile, Chile
| | - Mariett Torres
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción, Chile
| | - Simon A Morley
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - Jessica Hurley
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK; Department of Biological and Marine Sciences, University of Hull, Hull, UK
| | - Luis Caro-Lara
- Unidad de Proyectos y Medio Ambiente, Instituto Antártico Chileno, Plaza Muñoz Gamero 1055, Punta Arenas, Chile
| | - Karla Pozo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción, Chile; RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czechia
| | - Cristóbal Galban
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide 5780, Huechuraba, Santiago de Chile, Chile
| | - Rodolfo Rondon
- Departamento Científico, Instituto Antártico Chileno, Plaza Muñoz Gamero 1055, Punta Arenas, Chile.
| |
Collapse
|
4
|
Cavallo A, Clark MS, Peck LS, Harper EM, Sleight VA. Evolutionary conservation and divergence of the transcriptional regulation of bivalve shell secretion across life-history stages. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221022. [PMID: 36569229 PMCID: PMC9768464 DOI: 10.1098/rsos.221022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/13/2022] [Indexed: 06/17/2023]
Abstract
Adult molluscs produce shells with diverse morphologies and ornamentations, different colour patterns and microstructures. The larval shell, however, is a phenotypically more conserved structure. How do developmental and evolutionary processes generate varying diversity at different life-history stages within a species? Using live imaging, histology, scanning electron microscopy and transcriptomic profiling, we have described shell development in a heteroconchian bivalve, the Antarctic clam, Laternula elliptica, and compared it to adult shell secretion processes in the same species. Adult downstream shell genes, such as those encoding extracellular matrix proteins and biomineralization enzymes, were largely not expressed during shell development. Instead, a development-specific downstream gene repertoire was expressed. Upstream regulatory genes such as transcription factors and signalling molecules were largely conserved between developmental and adult shell secretion. Comparing heteroconchian data with recently reported pteriomorphian larval shell development data suggests that, despite being phenotypically more conserved, the downstream effectors constituting the larval shell 'tool-kit' may be as diverse as that of adults. Overall, our new data suggest that a larval shell formed using development-specific downstream effector genes is a conserved and ancestral feature of the bivalve lineage, and possibly more broadly across the molluscs.
Collapse
Affiliation(s)
- Alessandro Cavallo
- Biodiversity, Evolution and Adaptation Team, British Antarctic Survey, Cambridge CB3 0ET, UK
| | - Melody S. Clark
- Biodiversity, Evolution and Adaptation Team, British Antarctic Survey, Cambridge CB3 0ET, UK
| | - Lloyd S. Peck
- Biodiversity, Evolution and Adaptation Team, British Antarctic Survey, Cambridge CB3 0ET, UK
| | - Elizabeth M. Harper
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Victoria A. Sleight
- Biodiversity, Evolution and Adaptation Team, British Antarctic Survey, Cambridge CB3 0ET, UK
- Department of Zoology, University of Cambridge, Cambridge CB2 1TN, UK
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| |
Collapse
|