1
|
Van Hooren B, Aagaard P, Blazevich AJ. Optimizing Resistance Training for Sprint and Endurance Athletes: Balancing Positive and Negative Adaptations. Sports Med 2024; 54:3019-3050. [PMID: 39373864 PMCID: PMC11608172 DOI: 10.1007/s40279-024-02110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 10/08/2024]
Abstract
Resistance training (RT) triggers diverse morphological and physiological adaptations that are broadly considered beneficial for performance enhancement as well as injury risk reduction. Some athletes and coaches therefore engage in, or prescribe, substantial amounts of RT under the assumption that continued increments in maximal strength capacity and/or muscle mass will lead to improved sports performance. In contrast, others employ minimal or no RT under the assumption that RT may impair endurance or sprint performances. However, the morphological and physiological adaptations by which RT might impair physical performance, the likelihood of these being evoked, and the training program specifications that might promote such impairments, remain largely undefined. Here, we discuss how selected adaptations to RT may enhance or impair speed and endurance performances while also addressing the RT program variables under which these adaptations are likely to occur. Specifically, we argue that while some myofibrillar (muscle) hypertrophy can be beneficial for increasing maximum strength, substantial hypertrophy can lead to macro- and microscopic adaptations such as increases in body (or limb) mass and internal moment arms that might, under some conditions, impair both sprint and endurance performances. Further, we discuss how changes in muscle architecture, fiber typology, microscopic muscle structure, and intra- and intermuscular coordination with RT may maximize speed at the expense of endurance, or maximize strength at the expense of speed. The beneficial effect of RT for sprint and endurance sports can be further improved by considering the adaptive trade-offs and practical implications discussed in this review.
Collapse
Affiliation(s)
- Bas Van Hooren
- Department of Nutrition and Movement Sciences, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Universiteitssingel 50, Maastricht, NL, 6229 ER, The Netherlands.
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
2
|
Wang J, Zhang Q, Chen W, Fu H, Zhang M, Fan Y. The effect of flywheel complex training with eccentric-overload on muscular adaptation in elite female volleyball players. PeerJ 2024; 12:e17079. [PMID: 38525282 PMCID: PMC10961060 DOI: 10.7717/peerj.17079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
This study aimed to compare the effects of 8 weeks (24 sessions) between flywheel complex training with eccentric overload and traditional complex training of well-trained volleyball players on muscle adaptation, including hypertrophy, strength, and power variables. Fourteen athletes were recruited and randomly divided into the flywheel complex training with an eccentric-overload group (FCTEO, n = 7) and the control group (the traditional complex training group, TCT, n = 7). Participants performed half-squats using a flywheel device or Smith machine and drop jumps, with three sets of eight repetitions and three sets of 12 repetitions, respectively. The variables assessed included the muscle thickness at the proximal, mid, and distal sections of the quadriceps femoris, maximal half-squats strength (1RM-SS), squat jump (SJ), countermovement jump (CMJ), and three-step approach jump (AJ). In addition, a two-way repeated ANOVA analysis was used to find differences between the two groups and between the two testing times (pre-test vs. post-test). The indicators of the FCTEO group showed a significantly better improvement (p < 0.05) in CMJ (height: ES = 0.648, peak power: ES = 0.750), AJ (height: ES = 0.537, peak power: ES = 0.441), 1RM-SS (ES = 0.671) compared to the TCT group and the muscle thicknes at the mid of the quadriceps femoris (ES = 0.504) after FCTEO training. Since volleyball requires lower limb strength and explosive effort during repeated jumps and spiking, these results suggest that FCTEO affects muscular adaptation in a way that improves performance in well-trained female volleyball players.
Collapse
Affiliation(s)
- Jiaoqin Wang
- Capital University of Physical Education and Sports, Beijing, China
- Beijing Sport University, Beijing, China
| | - Qiang Zhang
- Capital University of Physical Education and Sports, Beijing, China
| | | | - Honghao Fu
- Huazhong University of Science and Technology, Wuhan, China
| | - Ming Zhang
- Beijing Sport University, Beijing, China
| | - Yongzhao Fan
- Department of Physical Education, Henan Normal University, Xinxiang, China
| |
Collapse
|
3
|
Kassiano W, Costa B, Kunevaliki G, Soares D, Zacarias G, Manske I, Takaki Y, Ruggiero MF, Stavinski N, Francsuel J, Tricoli I, Carneiro MAS, Cyrino ES. Greater Gastrocnemius Muscle Hypertrophy After Partial Range of Motion Training Performed at Long Muscle Lengths. J Strength Cond Res 2023; 37:1746-1753. [PMID: 37015016 DOI: 10.1519/jsc.0000000000004460] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/02/2022] [Indexed: 04/06/2023]
Abstract
ABSTRACT Kassiano, W, Costa, B, Kunevaliki, G, Soares, D, Zacarias, G, Manske, I, Takaki, Y, Ruggiero, MF, Stavinski, N, Francsuel, J, Tricoli, I, Carneiro, MAS, and Cyrino, ES. Greater gastrocnemius muscle hypertrophy after partial range of motion training performed at long muscle lengths. J Strength Cond Res 37(9): 1746-1753, 2023-Whether there is an optimal range of motion (ROM) to induce muscle hypertrophy remains elusive, especially for gastrocnemius. This study aimed to compare the changes in gastrocnemius muscle thickness between calf raise exercise performed with full ROM (FULL ROM ), partial ROM performed in the initial (INITIAL ROM ), and final (FINAL ROM ) portions of the ROM. Forty-two young women performed a calf training program for 8 weeks, 3 days·week -1 , with differences in the calf raise ROM configuration. The calf raise exercise was performed in a pin-loaded, horizontal, leg-press machine, in 3 sets of 15-20 repetition maximum. The subjects were randomly assigned to 1 of the 3 groups: FULL ROM (ankle: -25° to +25°), INITIAL ROM (ankle: -25° to 0°), and FINAL ROM (ankle: 0° to +25°), where 0° was defined as an angle of 90° of the foot with the tibia. The muscle thickness measurements of medial and lateral gastrocnemius were taken by means of B-mode ultrasound. INITIAL ROM elicited greater medial gastrocnemius increases than FULL ROM and FINAL ROM (INITIAL ROM = +15.2% vs. FULL ROM = +6.7% and FINAL ROM = +3.4%; p ≤ 0.009). Furthermore, INITIAL ROM elicited greater lateral gastrocnemius increases than FINAL ROM (INITIAL ROM = +14.9% vs. FINAL ROM = +6.2%; p < 0.024) but did not significantly differ from FULL ROM (FULL ROM = +7.3%; p = 0.060). The current results suggest that calf training performed at longer muscle lengths may optimize gastrocnemius muscle hypertrophy in young women. Therefore, when prescribing hypertrophy-oriented training, the inclusion of the calf raise exercise performed with partial ROM in the initial portion of the excursion should be considered.
Collapse
Affiliation(s)
- Witalo Kassiano
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Londrina, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Sinclair J, Taylor PJ, Shadwell G, Stone M, Booth N, Jones B, Finlay S, Ali AM, Butters B, Bentley I, Edmundson CJ. Two-Experiment Examination of Habitual and Manipulated Foot Placement Angles on the Kinetics, Kinematics, and Muscle Forces of the Barbell Back Squat in Male Lifters. SENSORS (BASEL, SWITZERLAND) 2022; 22:6999. [PMID: 36146352 PMCID: PMC9501107 DOI: 10.3390/s22186999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
This two-experiment study aimed to examine the effects of different habitual foot placement angles and also the effects of manipulating the foot placement angle on the kinetics, three-dimensional kinematics and muscle forces of the squat. In experiment 1, seventy lifters completed squats at 70% of their one repetition maximum using a self-preferred placement angle. They were separated based on their habitual foot angle into three groups HIGH, MEDIUM and LOW. In experiment 2, twenty lifters performed squats using the same relative mass in four different foot placement angle conditions (0°, 21°, 42° and control). Three-dimensional kinematics were measured using an eight-camera motion analysis system, ground reaction forces (GRF) using a force platform, and muscle forces using musculoskeletal modelling techniques. In experiment 1, the impulse of the medial GRF, in the descent and ascent phases, was significantly greater in the HIGH group compared to LOW, and in experiment 2 statistically greater in the 42° compared to the 21°, 0° and control conditions. Experiment 2 showed that the control condition statistically increased quadriceps muscle forces in relation to 0°, whereas the 0° condition significantly enhanced gluteus maximus, gastrocnemius and soleus forces compared to control. In experiment 1, patellofemoral joint stress was significantly greater in the HIGH group compared to LOW, and in experiment 2, patellar and patellofemoral loading were statistically greater in the control compared to the 42°, 21°, 0° and control conditions. Owing to the greater medial GRF's, increased foot placement angles may improve physical preparedness for sprint performance and rapid changes of direction. Reducing the foot angle may attenuate the biomechanical mechanisms linked to the aetiology of knee pathologies and to promote gluteus maximus, gastrocnemius and soleus muscular development. As such, though there does not appear to be an optimal foot placement angle, the observations from this study can be utilised by both strength and conditioning and sports therapy practitioners seeking to maximise training and rehabilitative adaptations.
Collapse
Affiliation(s)
- Jonathan Sinclair
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2RA, UK
| | - Paul John Taylor
- School of Psychology & Computer Sciences, Faculty of Science & Technology, University of Central Lancashire, Preston PR1 2RA, UK
| | - Gareth Shadwell
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2RA, UK
| | - Mark Stone
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2RA, UK
| | - Nicole Booth
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2RA, UK
| | - Bryan Jones
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2RA, UK
| | - Sam Finlay
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2RA, UK
| | - Ashraf Mohamed Ali
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2RA, UK
| | - Bobbie Butters
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2RA, UK
| | - Ian Bentley
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2RA, UK
- Wigan Warriors RLFC, Wigan WN5 0UH, UK
| | - Christopher James Edmundson
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2RA, UK
| |
Collapse
|
5
|
Sinclair J, Taylor PJ, Jones B, Butters B, Bentley I, Edmundson CJ. A Multi-Experiment Investigation of the Effects Stance Width on the Biomechanics of the Barbell Squat. Sports (Basel) 2022; 10:sports10090136. [PMID: 36136391 PMCID: PMC9503729 DOI: 10.3390/sports10090136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
This two-experiment study aimed to explore habitual and manipulated stance widths on squat biomechanics. In experiment one, 70 lifters completed back squats at 70%, 1 repetition maximum (1RM), and were split into groups (NARROW < 1.06 * greater trochanter width (GTW), MID 1.06−1.18 * GTW and WIDE > 1.37 * GTW) according to their self-selected stance width. In experiment two, 20 lifters performed squats at 70%, 1RM, in three conditions (NARROW, MID and WIDE, 1.0, 1.25 and 1.5 * GTW). The three-dimensional kinematics were measured using a motion capture system, ground reaction forces (GRF) using a force platform, and the muscle forces using musculoskeletal modelling. In experiment two, the peak power was significantly greater in the NARROW condition, whereas both experiments showed the medial GRF impulse was significantly greater in the WIDE stance. Experiment two showed the NARROW condition significantly increased the quadriceps forces, whereas both experiments showed that the WIDE stance width significantly enhanced the posterior-chain muscle forces. The NARROW condition may improve the high mechanical power movement performance and promote the quadriceps muscle development. Greater stance widths may improve sprint and rapid change-of-direction performance and promote posterior-chain muscle hypertrophy. Whilst it appears that there is not an optimal stance width, these observations can be utilized by strength and conditioning practitioners seeking to maximize training adaptations.
Collapse
Affiliation(s)
- Jonathan Sinclair
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2HE, UK
- Correspondence:
| | - Paul John Taylor
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2HE, UK
- Faculty of Science & Technology, School of Psychology & Computer Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Bryan Jones
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2HE, UK
| | - Bobbie Butters
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2HE, UK
| | - Ian Bentley
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2HE, UK
- Wigan Warriors RLFC, Wigan WN5 0UH, UK
| | - Christopher James Edmundson
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
6
|
Ueno H, Suga T, Takao K, Tanaka T, Miyake Y, Kusagawa Y, Terada M, Nagano A, Isaka T. Association between patellar tendon moment arm and running performance in endurance runners. Physiol Rep 2021; 9:e14981. [PMID: 34337901 PMCID: PMC8327161 DOI: 10.14814/phy2.14981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
A shorter joint moment arm (MA) may help maintain the necessary muscle force when muscle contractions are repeated. This beneficial effect may contribute to reducing the energy cost during running. In this study, we examined the correlation between patellar tendon MA and running performance in endurance runners. The patellar tendon MA and quadriceps femoris muscle volume (MV) in 42 male endurance runners and 14 body size-matched male untrained participants were measured using a 1.5-T magnetic resonance system. The patellar tendon MA was significantly shorter in endurance runners than in untrained participants (p = 0.034, d = 0.65). In endurance runners, shorter patellar tendon MA correlated significantly with better personal best 5000-m race rime (r = 0.322, p = 0.034). A trend toward such a significant correlation was obtained between quadriceps femoris MV and personal best 5000-m race time (r = 0.303, p = 0.051). Although the correlation between patellar tendon MA and personal best 5000-m race time did not remain significant after adjusting for the quadriceps femoris MV (partial r = 0.247, p = 0.120), a stepwise multiple regression analysis (conducted with body height, body mass, patellar tendon MA, and quadriceps femoris MV) selected the patellar tendon MA (β = 0.322) as only a predictive variable for the personal best 5000-m race time (adjusted R2 = 0.081, p = 0.038). These findings suggest that the shorter patellar tendon MA, partially accorded with the smaller quadriceps femoris size, may be a favorable morphological variable for better running performance in endurance runners.
Collapse
Affiliation(s)
- Hiromasa Ueno
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
- Graduate School of Health and Sport ScienceNippon Sport Science UniversityTokyoJapan
- Japan Society for the Promotion of ScienceTokyoJapan
| | - Tadashi Suga
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
| | - Kenji Takao
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
| | - Takahiro Tanaka
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
| | - Yuto Miyake
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
| | - Yuki Kusagawa
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
| | - Masafumi Terada
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
| | - Akinori Nagano
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
| | - Tadao Isaka
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
| |
Collapse
|
7
|
Sinclair J, Butters B, Taylor PJ, Stone M, Bentley I, Edmundson CJ. Effects of different footwear on kinetics, kinematics and muscle forces during the barbell back squat; an exploration using Bayesian modelling. FOOTWEAR SCIENCE 2020. [DOI: 10.1080/19424280.2020.1769202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jonathan Sinclair
- Centre for Applied Sport and Exercise Science, University of Central Lancashire, Preston, UK
| | - Bobbie Butters
- Centre for Applied Sport and Exercise Science, University of Central Lancashire, Preston, UK
| | - Paul John Taylor
- School of Psychology, University of Central Lancashire, Preston, UK
| | - Mark Stone
- Centre for Applied Sport and Exercise Science, University of Central Lancashire, Preston, UK
| | - Ian Bentley
- Centre for Applied Sport and Exercise Science, University of Central Lancashire, Preston, UK
| | | |
Collapse
|
8
|
Maden-Wilkinson TM, Balshaw TG, Massey GJ, Folland JP. What makes long-term resistance-trained individuals so strong? A comparison of skeletal muscle morphology, architecture, and joint mechanics. J Appl Physiol (1985) 2019; 128:1000-1011. [PMID: 31873069 PMCID: PMC7191505 DOI: 10.1152/japplphysiol.00224.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The greater muscular strength of long-term resistance-trained (LTT) individuals is often attributed to hypertrophy, but the role of other factors, notably maximum voluntary specific tension (ST), muscle architecture, and any differences in joint mechanics (moment arm), have not been documented. The aim of the present study was to examine the musculoskeletal factors that might explain the greater quadriceps strength and size of LTT vs. untrained (UT) individuals. LTT (n = 16, age 21.6 ± 2.0 yr) had 4.0 ± 0.8 yr of systematic knee extensor heavy-resistance training experience, whereas UT (n = 52; age 25.1 ± 2.3 yr) had no lower-body resistance training experience for >18 mo. Knee extension dynamometry, T1-weighted magnetic resonance images of the thigh and knee, and ultrasonography of the quadriceps muscle group at 10 locations were used to determine quadriceps: isometric maximal voluntary torque (MVT), muscle volume (QVOL), patella tendon moment arm (PTMA), pennation angle (QΘP) and fascicle length (QFL), physiological cross-sectional area (QPCSA), and ST. LTT had substantially greater MVT (+60% vs. UT, P < 0.001) and QVOL (+56%, P < 0.001) and QPCSA (+41%, P < 0.001) but smaller differences in ST (+9%, P < 0.05) and moment arm (+4%, P < 0.05), and thus muscle size was the primary explanation for the greater strength of LTT. The greater muscle size (volume) of LTT was primarily attributable to the greater QPCSA (+41%; indicating more sarcomeres in parallel) rather than the more modest difference in FL (+11%; indicating more sarcomeres in series). There was no evidence in the present study for regional hypertrophy after LTT. NEW & NOTEWORTHY Here we demonstrate that the larger muscle strength (+60%) of a long-term (4+ yr) resistance-trained group compared with untrained controls was due to their similarly larger muscle volume (+56%), primarily due to a larger physiological cross-sectional area and modest differences in fascicle length, as well as modest differences in maximum voluntary specific tension and patella tendon moment arm. In addition, the present study refutes the possibility of regional hypertrophy, despite large differences in muscle volume.
Collapse
Affiliation(s)
- Thomas M Maden-Wilkinson
- Academy of Sport and Physical Activity, Faculty of Health and Wellbeing, Collegiate Campus, Sheffield Hallam University, Sheffield, United Kingdom.,School of Sport, Exercise, and Health Sciences, Loughborough University, Leicestershire, United Kingdom
| | - Thomas G Balshaw
- School of Sport, Exercise, and Health Sciences, Loughborough University, Leicestershire, United Kingdom.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Leicestershire, United Kingdom
| | - Garry J Massey
- School of Sport, Exercise, and Health Sciences, Loughborough University, Leicestershire, United Kingdom.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Leicestershire, United Kingdom
| | - Jonathan P Folland
- School of Sport, Exercise, and Health Sciences, Loughborough University, Leicestershire, United Kingdom.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Leicestershire, United Kingdom
| |
Collapse
|
9
|
Acute effects of knee wraps/sleeve on kinetics, kinematics and muscle forces during the barbell back squat. SPORT SCIENCES FOR HEALTH 2019. [DOI: 10.1007/s11332-019-00595-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Bartholomae E, Incollingo A, Vizcaino M, Wharton C, Johnston CS. Mung Bean Protein Supplement Improves Muscular Strength in Healthy, Underactive Vegetarian Adults. Nutrients 2019; 11:nu11102423. [PMID: 31614532 PMCID: PMC6836142 DOI: 10.3390/nu11102423] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/19/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022] Open
Abstract
Although vegetarian diets are considered generally protective against chronic disease, nutrient deficiencies, including protein, are possible due to low bioavailability from plant-based sources. The consequences of inadequate dietary protein include reduced lean body mass (LBM) and muscle weakness. This study examined relationships between protein intake, strength, and LBM in 37 underactive vegetarians and recorded the impact of protein supplementation (18 g/day mung bean protein) on these indices utilizing an eight-week, randomized, controlled, feeding trial. Both handgrip and knee flexor and extensor strength were measured at baseline and week eight. At baseline, LBM was significantly related to grams of protein consumed daily. LBM was also correlated to grip strength (r = 0.569, p < 0.001) and lower body strength (r = 0.763 to 0.784; p < 0.001). Twenty-five vegetarians completed the feeding trial, including 11 in the protein supplementation group (PRO) and 14 in the control group (CON). At the end of the trial, LBM and strength did not differ significantly between groups. However, the average percent change for grip, flexor, and extensor strength did differ between PRO and CON participants (+2.9 ± 7.2% and −2.6 ± 7.3% respectively, p = 0.05). Thus, there were strong associations between dietary protein, LBM, and strength in vegetarians and an indication that supplementary vegetarian protein increased strength in the absence of exercise and independent of LBM.
Collapse
Affiliation(s)
- Eric Bartholomae
- College of Health Solutions, Nutrition Program, Arizona State University, 550 N. 3rd St., Phoenix, AZ 85004, USA.
| | - April Incollingo
- College of Health Solutions, Radical Simplicity Lab, Arizona State University, 550 N. 3rd St., Phoenix, AZ 85004, USA.
| | - Maricarmen Vizcaino
- College of Health Solutions, Radical Simplicity Lab, Arizona State University, 550 N. 3rd St., Phoenix, AZ 85004, USA.
| | - Christopher Wharton
- College of Health Solutions, Radical Simplicity Lab, Arizona State University, 550 N. 3rd St., Phoenix, AZ 85004, USA.
| | - Carol S Johnston
- College of Health Solutions, Nutrition Program, Arizona State University, 550 N. 3rd St., Phoenix, AZ 85004, USA.
| |
Collapse
|
11
|
Children with cerebral palsy have larger Achilles tendon moment arms than typically developing children. J Biomech 2019; 82:307-312. [DOI: 10.1016/j.jbiomech.2018.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/14/2018] [Accepted: 11/02/2018] [Indexed: 01/19/2023]
|
12
|
Vigotsky AD, Schoenfeld BJ, Than C, Brown JM. Methods matter: the relationship between strength and hypertrophy depends on methods of measurement and analysis. PeerJ 2018; 6:e5071. [PMID: 29967737 PMCID: PMC6026459 DOI: 10.7717/peerj.5071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022] Open
Abstract
Purpose The relationship between changes in muscle size and strength may be affected by both measurement and statistical approaches, but their effects have not been fully considered or quantified. Therefore, the purpose of this investigation was to explore how different methods of measurement and analysis can affect inferences surrounding the relationship between hypertrophy and strength gain. Methods Data from a previous study-in which participants performed eight weeks of elbow flexor training, followed by an eight-week period of detraining-were reanalyzed using different statistical models, including standard between-subject correlations, analysis of covariance, and hierarchical linear modeling. Results The associative relationship between strength and hypertrophy is highly dependent upon both method/site of measurement and analysis; large differences in variance accounted for (VAF) by the statistical models were observed (VAF = 0-24.1%). Different sites and measurements of muscle size showed a range of correlations coefficients with one another (r = 0.326-0.945). Finally, exploratory analyses revealed moderate-to-strong relationships between within-individual strength-hypertrophy relationships and strength gained over the training period (ρ = 0.36-0.55). Conclusions Methods of measurement and analysis greatly influence the conclusions that may be drawn from a given dataset. Analyses that do not account for inter-individual differences may underestimate the relationship between hypertrophy and strength gain, and different methods of assessing muscle size will produce different results. It is suggested that robust experimental designs and analysis techniques, which control for different mechanistic sources of strength gain and inter-individual differences (e.g., muscle moment arms, muscle architecture, activation, and normalized muscle force), be employed in future investigations.
Collapse
Affiliation(s)
- Andrew D Vigotsky
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
| | - Brad J Schoenfeld
- Department of Health Sciences, City University of New York, Herbert H. Lehman College, Bronx, NY, United States of America
| | - Christian Than
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - J Mark Brown
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
13
|
The effect of exercise hypertrophy and disuse atrophy on muscle contractile properties: a mechanomyographic analysis. Eur J Appl Physiol 2016; 116:2155-2165. [PMID: 27614880 DOI: 10.1007/s00421-016-3469-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/03/2016] [Indexed: 01/06/2023]
Abstract
PURPOSE To determine whether mechanomyographic (MMG) determined contractile properties of the biceps brachii change during exercise-induced hypertrophy and subsequent disuse atrophy. METHODS Healthy subjects (mean ± SD, 23.7 ± 2.6 years, BMI 21.8 ± 2.4, n = 19) performed unilateral biceps curls (9 sets × 12 repetitions, 5 sessions per week) for 8 weeks (hypertrophic phase) before ceasing exercise (atrophic phase) for the following 8 weeks (non-dominant limb; treatment, dominant limb; control). MMG measures of muscle contractile properties (contraction time; T c, maximum displacement; D max, contraction velocity; V c), electromyographic (EMG) measures of muscle fatigue (median power frequency; MPF), strength measures (maximum voluntary contraction; MVC) and measures of muscle thickness (ultrasound) were obtained. RESULTS Two-way repeated measures ANOVA showed significant differences (P < 0.05) between treatment and control limbs. During the hypertrophic phase treatment MVC initially declined (weeks 1-3), due to fatigue (decline in MPF), followed by improvement against control during weeks 6-8. Between weeks 5 and 8 treatment, muscle thickness was greater than control, reflecting gross hypertrophy. MMG variables Dmax (weeks 2, 7) and Vc (weeks 7, 8) declined. During the atrophic phase, MVC (weeks 9-12) and muscle thickness (weeks 9, 10) initially remained high before declining to control levels, reflecting gross atrophy. MMG variables D max (weeks 9, 14) and V c (weeks 9, 14, 15) also declined during the atrophic phase. No change in T c was found throughout the hypertrophic or atrophic phases. CONCLUSIONS MMG detects changes in contractile properties during stages of exercise-induced hypertrophy and disuse atrophy suggesting its applicability as a clinical tool in musculoskeletal rehabilitation.
Collapse
|