1
|
González-Pech RA, Shepherd J, Fuller ZL, LaJeunesse TC, Parkinson JE. The genome of a giant clam zooxanthella (Cladocopium infistulum) offers few clues to adaptation as an extracellular symbiont with high thermotolerance. BMC Genomics 2024; 25:914. [PMID: 39354409 PMCID: PMC11443893 DOI: 10.1186/s12864-024-10822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Cladocopium infistulum (Symbiodiniaceae) is a dinoflagellate specialized to live in symbiosis with western Pacific giant clams (Tridacnidae). Unlike coral-associated symbionts, which reside within the host cells, C. infistulum inhabits the extracellular spaces of the clam's digestive diverticula. It is phylogenetically basal to a large species complex of stress-tolerant Cladocopium, many of which are associated with important reef-building corals in the genus Porites. This close phylogenetic relationship may explain why C. infistulum exhibits high thermotolerance relative to other tridacnid symbionts. Moreover, past analyses of microsatellite loci indicated that Cladocopium underwent whole-genome duplication prior to the adaptive radiations that led to its present diversity. RESULTS A draft genome assembly of C. infistulum was produced using long- and short-read sequences to explore the genomic basis for adaptations underlying thermotolerance and extracellular symbiosis among dinoflagellates and to look for evidence of genome duplication. Comparison to three other Cladocopium genomes revealed no obvious over-representation of gene groups or families whose functions would be important for maintaining C. infistulum's unique physiological and ecological properties. Preliminary analyses support the existence of partial or whole-genome duplication among Cladocopium, but additional high-quality genomes are required to substantiate these findings. CONCLUSION Although this investigation of Cladocopium infistulum revealed no patterns diagnostic of heat tolerance or extracellular symbiosis in terms of overrepresentation of gene functions or genes under selection, it provided a valuable genomic resource for comparative analyses. It also indicates that ecological divergence among Cladocopium species, and potentially among other dinoflagellates, is partially governed by mechanisms other than gene content. Thus, additional high-quality, multiomic data are needed to explore the molecular basis of key phenotypes among symbiotic microalgae.
Collapse
Affiliation(s)
- Raúl A González-Pech
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA.
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Jihanne Shepherd
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
- Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Zachary L Fuller
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Todd C LaJeunesse
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
- Institute of Energy and the Environment, The Pennsylvania State University, University Park, PA, 16802, USA
| | | |
Collapse
|
2
|
Denis H, Selmoni O, Gossuin H, Jauffrais T, Butler CC, Lecellier G, Berteaux-Lecellier V. Climate adaptive loci revealed by seascape genomics correlate with phenotypic variation in heat tolerance of the coral Acropora millepora. Sci Rep 2024; 14:22179. [PMID: 39333135 PMCID: PMC11436834 DOI: 10.1038/s41598-024-67971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/18/2024] [Indexed: 09/29/2024] Open
Abstract
One of the main challenges in coral reef conservation and restoration is the identification of coral populations resilient under global warming. Seascape genomics is a powerful tool to uncover genetic markers potentially involved in heat tolerance among large populations without prior information on phenotypes. Here, we aimed to provide first insights on the role of candidate heat associated loci identified using seascape genomics in driving the phenotypic response of Acropora millepora from New Caledonia to thermal stress. We subjected 7 colonies to a long-term ex-situ heat stress assay (4 °C above the maximum monthly mean) and investigated their physiological response along with their Symbiodiniaceae communities and genotypes. Despite sharing similar thermal histories and associated symbionts, these conspecific individuals differed greatly in their tolerance to heat stress. More importantly, the clustering of individuals based on their genotype at heat-associated loci matched the phenotypic variation in heat tolerance. Colonies that sustained on average lower mortality, higher Symbiodiniaceae/chlorophyll concentrations and photosynthetic efficiency under prolonged heat stress were also the closest based on their genotypes, although the low sample size prevented testing loci predictive accuracy. Together these preliminary results support the relevance of coupling seascape genomics and long-term heat stress experiments in the future, to evaluate the effect size of candidate heat associated loci and pave the way for genomic predictive models of corals heat tolerance.
Collapse
Affiliation(s)
- Hugo Denis
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia.
- Ecole Doctorale 129, SU Sorbonne Université, 4, Place Jussieu, 75252, Paris, France.
| | - Oliver Selmoni
- Laboratory of Geographic Information Systems (LASIG), EPFL, Lausanne, Switzerland
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Hugues Gossuin
- Laboratory of Marine Biology and Ecology, Aquarium des Lagons, Nouméa, New Caledonia
| | - Thierry Jauffrais
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia
| | | | - Gaël Lecellier
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia
- Institut des Sciences Exactes et Appliquées (ISEA) EA7484, 145, Avenue James Cook, BP R4 98 851, Nouméa, New Caledonia
| | | |
Collapse
|
3
|
Yoshioka Y, Yamashita H, Uchida T, Shinzato C, Kawamitsu M, Fourreau CJL, Castelló GM, Fiedler BK, van den Eeckhout TM, Borghi S, Reimer JD, Shoguchi E. Azooxanthellate Palythoa (Cnidaria: Anthozoa) Genomes Reveal Toxin-related Gene Clusters and Loss of Neuronal Genes in Hexacorals. Genome Biol Evol 2024; 16:evae197. [PMID: 39240721 DOI: 10.1093/gbe/evae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/08/2024] Open
Abstract
Zoantharia is an order among the Hexacorallia (Anthozoa: Cnidaria), and includes at least 300 species. Previously reported genomes from scleractinian corals and actiniarian sea anemones have illuminated part of the hexacorallian diversification. However, little is known about zoantharian genomes and the early evolution of hexacorals. To explore genome evolution in this group of hexacorals, here, we report de novo genome assemblies of the zoantharians Palythoa mizigama (Pmiz) and Palythoa umbrosa (Pumb), both of which are members of the family Sphenopidae, and uniquely live in comparatively dark coral reef caves without symbiotic Symbiodiniaceae dinoflagellates. Draft genomes generated from ultra-low input PacBio sequencing totaled 373 and 319 Mbp for Pmiz and Pumb, respectively. Protein-coding genes were predicted in each genome, totaling 30,394 in Pmiz and 24,800 in Pumb, with each set having ∼93% BUSCO completeness. Comparative genomic analyses identified 3,036 conserved gene families, which were found in all analyzed hexacoral genomes. Some of the genes related to toxins, chitin degradation, and prostaglandin biosynthesis were expanded in these two Palythoa genomes and many of which aligned tandemly. Extensive gene family loss was not detected in the Palythoa lineage and five of ten putatively lost gene families likely had neuronal function, suggesting biased gene loss in Palythoa. In conclusion, our comparative analyses demonstrate evolutionary conservation of gene families in the Palythoa lineage from the common ancestor of hexacorals. Restricted loss of gene families may imply that lost neuronal functions were effective for environmental adaptation in these two Palythoa species.
Collapse
Affiliation(s)
- Yuki Yoshioka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa 907-0451, Japan
| | - Taiga Uchida
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwanoha, Kashiwa 277-8564, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwanoha, Kashiwa 277-8564, Japan
| | - Mayumi Kawamitsu
- Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Chloé Julie Loïs Fourreau
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Guillermo Mironenko Castelló
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Britta Katharina Fiedler
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Timotheus Maximilian van den Eeckhout
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Stefano Borghi
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum Network, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
4
|
Burgess SC, Turner AM, Johnston EC. Niche breadth and divergence in sympatric cryptic coral species ( Pocillopora spp.) across habitats within reefs and among algal symbionts. Evol Appl 2024; 17:e13762. [PMID: 39100752 PMCID: PMC11294925 DOI: 10.1111/eva.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024] Open
Abstract
While the presence of morphologically cryptic species is increasingly recognized, we still lack a useful understanding of what causes and maintains co-occurring cryptic species and its consequences for the ecology, evolution, and conservation of communities. We sampled 724 Pocillopora corals from five habitat zones (the fringing reef, back reef, and fore reef at 5, 10, and 20 m) at four sites around the island of Moorea, French Polynesia. Using validated genetic markers, we identified six sympatric species of Pocillopora, most of which cannot be reliably identified based on morphology: P. meandrina (42.9%), P. tuahiniensis (25.1%), P. verrucosa (12.2%), P. acuta (10.4%), P. grandis (7.73%), and P. cf. effusa (2.76%). For 423 colonies (58% of the genetically identified hosts), we also used psbA ncr or ITS2 markers to identify symbiont species (Symbiodiniaceae). The relative abundance of Pocillopora species differed across habitats within the reef. Sister taxa P. verrucosa and P. tuahiniensis had similar niche breadths and hosted the same specialist symbiont species (mostly Cladocopium pacificum) but the former was more common in the back reef and the latter more common deeper on the fore reef. In contrast, sister taxa P. meandrina and P. grandis had the highest niche breadths and overlaps and tended to host the same specialist symbiont species (mostly C. latusorum). Pocillopora acuta had the narrowest niche breadth and hosted the generalist, and more thermally tolerant, Durusdinium gynnii. Overall, there was a positive correlation between reef habitat niche breadth and symbiont niche breadth-Pocillopora species with a broader habitat niche also had a broader symbiont niche. Our results show how fine-scale variation within reefs plays an important role in the generation and coexistence of cryptic species. The results also have important implications for how niche differences affect community resilience, and for the success of coral restoration practices, in ways not previously appreciated.
Collapse
Affiliation(s)
- Scott C. Burgess
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Alyssa M. Turner
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Erika C. Johnston
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
- Present address:
Hawai‘i Institute of Marine BiologyKāne‘oheHawaiiUSA
| |
Collapse
|
5
|
Deore P, Tsang Min Ching SJ, Nitschke MR, Rudd D, Brumley DR, Hinde E, Blackall LL, van Oppen MJH. Unique photosynthetic strategies employed by closely related Breviolum minutum strains under rapid short-term cumulative heat stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4005-4023. [PMID: 38636949 PMCID: PMC11233414 DOI: 10.1093/jxb/erae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
The thermal tolerance of symbiodiniacean photo-endosymbionts largely underpins the thermal bleaching resilience of their cnidarian hosts such as corals and the coral model Exaiptasia diaphana. While variation in thermal tolerance between species is well documented, variation between conspecific strains is understudied. We compared the thermal tolerance of three closely related strains of Breviolum minutum represented by two internal transcribed spacer region 2 profiles (one strain B1-B1o-B1g-B1p and the other two strains B1-B1a-B1b-B1g) and differences in photochemical and non-photochemical quenching, de-epoxidation state of photopigments, and accumulation of reactive oxygen species under rapid short-term cumulative temperature stress (26-40 °C). We found that B. minutum strains employ distinct photoprotective strategies, resulting in different upper thermal tolerances. We provide evidence for previously unknown interdependencies between thermal tolerance traits and photoprotective mechanisms that include a delicate balancing of excitation energy and its dissipation through fast relaxing and state transition components of non-photochemical quenching. The more thermally tolerant B. minutum strain (B1-B1o-B1g-B1p) exhibited an enhanced de-epoxidation that is strongly linked to the thylakoid membrane melting point and possibly membrane rigidification minimizing oxidative damage. This study provides an in-depth understanding of photoprotective mechanisms underpinning thermal tolerance in closely related strains of B. minutum.
Collapse
Affiliation(s)
- Pranali Deore
- School of BioSciences, The University of Melbourne, Parkville 3010, Victoria, Australia
| | | | - Matthew R Nitschke
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
- School of Biological Sciences, Victoria University of Wellington, Wellington 6102, New Zealand
| | - David Rudd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Douglas R Brumley
- School of Mathematics and Statistics, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Elizabeth Hinde
- School of Physics, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville 3010, Victoria, Australia
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| |
Collapse
|
6
|
Chille EE, Stephens TG, Misri D, Strand EL, Putnam HM, Bhattacharya D. Gene expression response under thermal stress in two Hawaiian corals is dominated by ploidy and genotype. Ecol Evol 2024; 14:e70037. [PMID: 39050655 PMCID: PMC11268936 DOI: 10.1002/ece3.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Transcriptome data are frequently used to investigate coral bleaching; however, the factors controlling gene expression in natural populations of these species are poorly understood. We studied two corals, Montipora capitata and Pocillopora acuta, that inhabit the sheltered Kāne'ohe Bay, Hawai'i. M. capitata colonies in the bay are outbreeding diploids, whereas P. acuta is a mixture of clonal diploids and triploids. Populations were sampled from six reefs and subjected to either control (no stress), thermal stress, pH stress, or combined pH and thermal stress treatments. RNA-seq data were generated to test two competing hypotheses: (1) gene expression is largely independent of genotype, reflecting a shared treatment-driven response (TDE) or, (2) genotype dominates gene expression, regardless of treatment (GDE). Our results strongly support the GDE model, even under severe stress. We suggest that post-transcriptional processes (e.g., control of translation, protein turnover) modify the signal from the transcriptome, and may underlie the observed differences in coral bleaching sensitivity via the downstream proteome and metabolome.
Collapse
Affiliation(s)
- Erin E. Chille
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNew JerseyUSA
| | - Timothy G. Stephens
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNew JerseyUSA
| | - Deeksha Misri
- Department of GeneticsRutgers UniversityNew BrunswickNew JerseyUSA
| | - Emma L. Strand
- Department of Biological SciencesUniversity of Rhode IslandKingstonRhode IslandUSA
- Gloucester Marine Genomics InstituteGloucesterMassachusettsUSA
| | - Hollie M. Putnam
- Department of Biological SciencesUniversity of Rhode IslandKingstonRhode IslandUSA
| | | |
Collapse
|
7
|
Nitschke MR, Abrego D, Allen CE, Alvarez-Roa C, Boulotte NM, Buerger P, Chan WY, Fae Neto WA, Ivory E, Johnston B, Meyers L, Parra V C, Peplow L, Perez T, Scharfenstein HJ, van Oppen MJH. The use of experimentally evolved coral photosymbionts for reef restoration. Trends Microbiol 2024:S0966-842X(24)00139-2. [PMID: 38942718 DOI: 10.1016/j.tim.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/30/2024]
Abstract
The heat tolerance of corals is largely determined by their microbial photosymbionts (Symbiodiniaceae, colloquially known as zooxanthellae). Therefore, manipulating symbiont communities may enhance the ability of corals to survive summer heatwaves. Although heat-tolerant and -sensitive symbiont species occur in nature, even corals that harbour naturally tolerant symbionts have been observed to bleach during summer heatwaves. Experimental evolution (i.e., laboratory selection) of Symbiodiniaceae cultures under elevated temperatures has been successfully used to enhance their upper thermal tolerance, both in vitro and, in some instances, following their reintroduction into corals. In this review, we present the state of this intervention and its potential role within coral reef restoration, and discuss the next critical steps required to bridge the gap to implementation.
Collapse
Affiliation(s)
- Matthew R Nitschke
- Australian Institute of Marine Science, Townsville, QLD, Australia; School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - David Abrego
- Australian Institute of Marine Science, Townsville, QLD, Australia; Faculty of Science and Engineering, Southern Cross University, East Lismore, NSW, Australia
| | - Corinne E Allen
- Australian Institute of Marine Science, Townsville, QLD, Australia; School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | | | | | - Patrick Buerger
- Australian Institute of Marine Science, Townsville, QLD, Australia; Applied BioSciences, Macquarie University, Sydney, NSW, Australia
| | - Wing Yan Chan
- Australian Institute of Marine Science, Townsville, QLD, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | | | - Elizabeth Ivory
- Australian Institute of Marine Science, Townsville, QLD, Australia; Faculty of Science and Engineering, Southern Cross University, East Lismore, NSW, Australia
| | - Bede Johnston
- Australian Institute of Marine Science, Townsville, QLD, Australia; School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Luka Meyers
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Catalina Parra V
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Lesa Peplow
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Tahirih Perez
- Australian Institute of Marine Science, Townsville, QLD, Australia; College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Hugo J Scharfenstein
- Australian Institute of Marine Science, Townsville, QLD, Australia; School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville, QLD, Australia; School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
8
|
Cunning R, Lenz EA, Edmunds PJ. Measuring multi-year changes in the Symbiodiniaceae algae in Caribbean corals on coral-depleted reefs. PeerJ 2024; 12:e17358. [PMID: 38827291 PMCID: PMC11141555 DOI: 10.7717/peerj.17358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 06/04/2024] Open
Abstract
Monitoring coral cover can describe the ecology of reef degradation, but rarely can it reveal the proximal mechanisms of change, or achieve its full potential in informing conservation actions. Describing temporal variation in Symbiodiniaceae within corals can help address these limitations, but this is rarely a research priority. Here, we augmented an ecological time series of the coral reefs of St. John, US Virgin Islands, by describing the genetic complement of symbiotic algae in common corals. Seventy-five corals from nine species were marked and sampled in 2017. Of these colonies, 41% were sampled in 2018, and 72% in 2019; 28% could not be found and were assumed to have died. Symbiodiniaceae ITS2 sequencing identified 525 distinct sequences (comprising 42 ITS2 type profiles), and symbiont diversity differed among host species and individuals, but was in most cases preserved within hosts over 3 yrs that were marked by physical disturbances from major hurricanes (2017) and the regional onset of stony coral tissue loss disease (2019). While changes in symbiont communities were slight and stochastic over time within colonies, variation in the dominant symbionts among colonies was observed for all host species. Together, these results indicate that declining host abundances could lead to the loss of rare algal lineages that are found in a low proportion of few coral colonies left on many reefs, especially if coral declines are symbiont-specific. These findings highlight the importance of identifying Symbiodiniaceae as part of a time series of coral communities to support holistic conservation planning. Repeated sampling of tagged corals is unlikely to be viable for this purpose, because many Caribbean corals are dying before they can be sampled multiple times. Instead, random sampling of large numbers of corals may be more effective in capturing the diversity and temporal dynamics of Symbiodiniaceae metacommunities in reef corals.
Collapse
Affiliation(s)
- Ross Cunning
- Conservation Research Department, John G. Shedd Aquarium, Chicago, Illinois, United States
| | - Elizabeth A. Lenz
- University of Hawai‘i Sea Grant College Program, University of Hawai‘i at Mānoa, Honolulu, Hawaii, United States
| | - Peter J. Edmunds
- Department of Biology, California State University, Northridge, Northridge, California, United States
| |
Collapse
|
9
|
Marzonie MR, Nitschke MR, Bay LK, Bourne DG, Harrison HB. Symbiodiniaceae diversity varies by host and environment across thermally distinct reefs. Mol Ecol 2024; 33:e17342. [PMID: 38584356 DOI: 10.1111/mec.17342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/07/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Endosymbiotic dinoflagellates (Symbiodiniaceae) influence coral thermal tolerance at both local and regional scales. In isolation, the effects of host genetics, environment, and thermal disturbances on symbiont communities are well understood, yet their combined effects remain poorly resolved. Here, we investigate Symbiodiniaceae across 1300 km in Australia's Coral Sea Marine Park to disentangle these interactive effects. We identified Symbiodiniaceae to species-level resolution for three coral species (Acropora cf humilis, Pocillopora verrucosa, and Pocillopora meandrina) by sequencing two genetic markers of the symbiont (ITS2 and psbAncr), paired with genotype-by-sequencing of the coral host (DArT-seq). Our samples predominantly returned sequences from the genus Cladocopium, where Acropora cf humilis affiliated with C3k, Pocillopora verrucosa with C. pacificum, and Pocillopora meandrina with C. latusorum. Multivariate analyses revealed that Acropora symbionts were driven strongly by local environment and thermal disturbances. In contrast, Pocillopora symbiont communities were both partitioned 2.5-fold more by host genetic structure than by environmental structure. Among the two Pocillopora species, the effects of environment and host genetics explained four times more variation in symbionts for P. meandrina than P. verrucosa. The concurrent bleaching event in 2020 had variable impacts on symbiont communities, consistent with patterns in P. verrucosa and A. cf humilis, but not P. meandrina. Our findings demonstrate how symbiont macroscale community structure responses to environmental gradients depend on host species and their respective population structure. Integrating host, symbiont, and environmental data will help forecast the adaptive potential of corals and their symbionts amidst a rapidly changing environment.
Collapse
Affiliation(s)
- Magena R Marzonie
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- AIMS@JCU, Townsville, Queensland, Australia
| | - Matthew R Nitschke
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Line K Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- AIMS@JCU, Townsville, Queensland, Australia
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Hugo B Harrison
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- AIMS@JCU, Townsville, Queensland, Australia
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
10
|
Dellisanti W, Zhang Q, Ferrier-Pagès C, Kühl M. Contrasting effects of increasing dissolved iron on photosynthesis and O 2 availability in the gastric cavity of two Mediterranean corals. PeerJ 2024; 12:e17259. [PMID: 38699194 PMCID: PMC11064864 DOI: 10.7717/peerj.17259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
Iron (Fe) plays a fundamental role in coral symbiosis, supporting photosynthesis, respiration, and many important enzymatic reactions. However, the extent to which corals are limited by Fe and their metabolic responses to inorganic Fe enrichment remains to be understood. We used respirometry, variable chlorophyll fluorescence, and O2 microsensors to investigate the impact of increasing Fe(III) concentrations (20, 50, and 100 nM) on the photosynthetic capacity of two Mediterranean coral species, Cladocora caespitosa and Oculina patagonica. While the bioavailability of inorganic Fe can rapidly decrease, we nevertheless observed significant physiological effects at all Fe concentrations. In C. caespitosa, exposure to 50 nM Fe(III) increased rates of respiration and photosynthesis, while the relative electron transport rate (rETR(II)) decreased at higher Fe(III) exposure (100 nM). In contrast, O. patagonica reduced respiration, photosynthesis rates, and maximum PSII quantum yield (Fv/Fm) across all iron enrichments. Both corals exhibited increased hypoxia (<50 µmol O2 L-1) within their gastric cavity at night when exposed to 50 and 100 nM Fe(III), leading to increased polyp contraction time and reduced O2 exchange with the surrounding water. Our results indicate that C. caespitosa, but not O. patagonica, might be limited in Fe for achieving maximal photosynthetic efficiency. Understanding the multifaceted role of iron in corals' health and their response to environmental change is crucial for effective coral conservation.
Collapse
Affiliation(s)
- Walter Dellisanti
- Department of Biology, Marine Biology Section, University of Copenhagen, Helsingør, Denmark
| | - Qingfeng Zhang
- Department of Biology, Marine Biology Section, University of Copenhagen, Helsingør, Denmark
| | - Christine Ferrier-Pagès
- Coral Ecophysiology Laboratory, Center Scientifique de Monaco, Principality of Monaco, Monaco
| | - Michael Kühl
- Department of Biology, Marine Biology Section, University of Copenhagen, Helsingør, Denmark
| |
Collapse
|
11
|
Castillo KD, Bove CB, Hughes AM, Powell ME, Ries JB, Davies SW. Gene expression plasticity facilitates acclimatization of a long-lived Caribbean coral across divergent reef environments. Sci Rep 2024; 14:7859. [PMID: 38570591 PMCID: PMC10991280 DOI: 10.1038/s41598-024-57319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
Local adaptation can increase fitness under stable environmental conditions. However, in rapidly changing environments, compensatory mechanisms enabled through plasticity may better promote fitness. Climate change is causing devastating impacts on coral reefs globally and understanding the potential for adaptive and plastic responses is critical for reef management. We conducted a four-year, three-way reciprocal transplant of the Caribbean coral Siderastrea siderea across forereef, backreef, and nearshore populations in Belize to investigate the potential for environmental specialization versus plasticity in this species. Corals maintained high survival within forereef and backreef environments, but transplantation to nearshore environments resulted in high mortality, suggesting that nearshore environments present strong environmental selection. Only forereef-sourced corals demonstrated evidence of environmental specialization, exhibiting the highest growth in the forereef. Gene expression profiling 3.5 years post-transplantation revealed that transplanted coral hosts exhibited profiles more similar to other corals in the same reef environment, regardless of their source location, suggesting that transcriptome plasticity facilitates acclimatization to environmental change in S. siderea. In contrast, algal symbiont (Cladocopium goreaui) gene expression showcased functional variation between source locations that was maintained post-transplantation. Our findings suggest limited acclimatory capacity of some S. siderea populations under strong environmental selection and highlight the potential limits of coral physiological plasticity in reef restoration.
Collapse
Affiliation(s)
- Karl D Castillo
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Colleen B Bove
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biology, Boston University, Boston, MA, USA.
| | | | - Maya E Powell
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Justin B Ries
- Department of Marine and Environmental Sciences, Marine Sciences Center, Northeastern University, Nahant, MA, USA
| | - Sarah W Davies
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
12
|
Grupstra CGB, Gómez-Corrales M, Fifer JE, Aichelman HE, Meyer-Kaiser KS, Prada C, Davies SW. Integrating cryptic diversity into coral evolution, symbiosis and conservation. Nat Ecol Evol 2024; 8:622-636. [PMID: 38351091 DOI: 10.1038/s41559-023-02319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/12/2023] [Indexed: 04/13/2024]
Abstract
Understanding how diversity evolves and is maintained is critical to predicting the future trajectories of ecosystems under climate change; however, our understanding of these processes is limited in marine systems. Corals, which engineer reef ecosystems, are critically threatened by climate change, and global efforts are underway to conserve and restore populations as attempts to mitigate ocean warming continue. Recently, sequencing efforts have uncovered widespread undescribed coral diversity, including 'cryptic lineages'-genetically distinct but morphologically similar coral taxa. Such cryptic lineages have been identified in at least 24 coral genera spanning the anthozoan phylogeny and across ocean basins. These cryptic lineages co-occur in many reef systems, but their distributions often differ among habitats. Research suggests that cryptic lineages are ecologically specialized and several examples demonstrate differences in thermal tolerance, highlighting the critical implications of this diversity for predicting coral responses to future warming. Here, we draw attention to recent discoveries, discuss how cryptic diversity affects the study of coral adaptation and acclimation to future environments, explore how it shapes symbiotic partnerships, and highlight challenges and opportunities for conservation and restoration efforts.
Collapse
Affiliation(s)
| | | | - James E Fifer
- Department of Biology, Boston University, Boston, MA, USA
| | | | | | - Carlos Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
13
|
Bhattacharya D, Stephens TG, Chille EE, Benites LF, Chan CX. Facultative lifestyle drives diversity of coral algal symbionts. Trends Ecol Evol 2024; 39:239-247. [PMID: 37953106 DOI: 10.1016/j.tree.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023]
Abstract
The photosynthetic symbionts of corals sustain biodiverse reefs in nutrient-poor, tropical waters. Recent genomic data illuminate the evolution of coral symbionts under genome size constraints and suggest that retention of the facultative lifestyle, widespread among these algae, confers a selective advantage when compared with a strict symbiotic existence. We posit that the coral symbiosis is analogous to a 'bioreactor' that selects winner genotypes and allows them to rise to high numbers in a sheltered habitat prior to release by the coral host. Our observations lead to a novel hypothesis, the 'stepping-stone model', which predicts that local adaptation under both the symbiotic and free-living stages, in a stepwise fashion, accelerates coral alga diversity and the origin of endemic strains and species.
Collapse
Affiliation(s)
- Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Erin E Chille
- Ecology and Evolution Graduate Program, Rutgers University, New Brunswick, NJ 08901, USA
| | - L Felipe Benites
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, QLD, Australia.
| |
Collapse
|
14
|
Quigley KM. Breeding and Selecting Corals Resilient to Global Warming. Annu Rev Anim Biosci 2024; 12:209-332. [PMID: 37931139 DOI: 10.1146/annurev-animal-021122-093315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Selective breeding of resilient organisms is an emerging topic in marine conservation. It can help us predict how species will adapt in the future and how we can help restore struggling populations effectively in the present. Scleractinian corals represent a potential tractable model system given their widescale phenotypic plasticity across fitness-related traits and a reproductive life history based on mass synchronized spawning. Here, I explore the justification for breeding in corals, identify underutilized pathways of acclimation, and highlight avenues for quantitative targeted breeding from the coral host and symbiont perspective. Specifically, the facilitation of enhanced heat tolerance by targeted breeding of plasticity mechanisms is underutilized. Evidence from theoretical genetics identifies potential pitfalls, including inattention to physical and genetic characteristics of the receiving environment. Three criteria for breeding emerge from this synthesis: selection from warm, variable reefs that have survived disturbance. This information will be essential to protect what we have and restore what we can.
Collapse
Affiliation(s)
- K M Quigley
- The Minderoo Foundation, Perth, Western Australia, Australia;
- James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
15
|
Matthews JL, Ueland M, Bartels N, Lawson CA, Lockwood TE, Wu Y, Camp EF. Multi-Chemical Omics Analysis of the Symbiodiniaceae Durusdinium trenchii under Heat Stress. Microorganisms 2024; 12:317. [PMID: 38399721 PMCID: PMC10893086 DOI: 10.3390/microorganisms12020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The urgency of responding to climate change for corals necessitates the exploration of innovative methods to swiftly enhance our understanding of crucial processes. In this study, we employ an integrated chemical omics approach, combining elementomics, metabolomics, and volatilomics methodologies to unravel the biochemical pathways associated with the thermal response of the coral symbiont, Symbiodiniaceae Durusdinium trenchii. We outline the complimentary sampling approaches and discuss the standardised data corrections used to allow data integration and comparability. Our findings highlight the efficacy of individual methods in discerning differences in the biochemical response of D. trenchii under both control and stress-inducing temperatures. However, a deeper insight emerges when these methods are integrated, offering a more comprehensive understanding, particularly regarding oxidative stress pathways. Employing correlation network analysis enhanced the interpretation of volatile data, shedding light on the potential metabolic origins of volatiles with undescribed functions and presenting promising candidates for further exploration. Elementomics proves to be less straightforward to integrate, likely due to no net change in elements but rather elements being repurposed across compounds. The independent and integrated data from this study informs future omic profiling studies and recommends candidates for targeted research beyond Symbiodiniaceae biology. This study highlights the pivotal role of omic integration in advancing our knowledge, addressing critical gaps, and guiding future research directions in the context of climate change and coral reef preservation.
Collapse
Affiliation(s)
- Jennifer L. Matthews
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Maiken Ueland
- Centre for Forensic Sciences, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Natasha Bartels
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Caitlin A. Lawson
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia
| | - Thomas E. Lockwood
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Yida Wu
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Emma F. Camp
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
16
|
He J, Huang Y, Li L, Lin S, Ma M, Wang Y, Lin S. Novel Plastid Genome Characteristics in Fugacium kawagutii and the Trend of Accelerated Evolution of Plastid Proteins in Dinoflagellates. Genome Biol Evol 2024; 16:evad237. [PMID: 38155596 PMCID: PMC10781511 DOI: 10.1093/gbe/evad237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023] Open
Abstract
Typical (peridinin-containing) dinoflagellates possess plastid genomes composed of small plasmids named "minicircles". Despite the ecological importance of dinoflagellate photosynthesis in corals and marine ecosystems, the structural characteristics, replication dynamics, and evolutionary forcing of dinoflagellate plastid genomes remain poorly understood. Here, we sequenced the plastid genome of the symbiodiniacean species Fugacium kawagutii and conducted comparative analyses. We identified psbT-coding minicircles, features previously not found in Symbiodiniaceae. The copy number of F. kawagutii minicircles showed a strong diel dynamics, changing between 3.89 and 34.3 copies/cell and peaking in mid-light period. We found that F. kawagutii minicircles are the shortest among all dinoflagellates examined to date. Besides, the core regions of the minicircles are highly conserved within genus in Symbiodiniaceae. Furthermore, the codon usage bias of the plastid genomes in Heterocapsaceae, Amphidiniaceae, and Prorocentraceae species are greatly influenced by selection pressure, and in Pyrocystaceae, Symbiodiniaceae, Peridiniaceae, and Ceratiaceae species are influenced by both natural selection pressure and mutation pressure, indicating a family-level distinction in codon usage evolution in dinoflagellates. Phylogenetic analysis using 12 plastid-encoded proteins and five nucleus-encoded plastid proteins revealed accelerated evolution trend of both plastid- and nucleus-encoded plastid proteins in peridinin- and fucoxanthin-dinoflagellate plastids compared to plastid proteins of nondinoflagellate algae. These findings shed new light on the structure and evolution of plastid genomes in dinoflagellates, which will facilitate further studies on the evolutionary forcing and function of the diverse dinoflagellate plastids. The accelerated evolution documented here suggests plastid-encoded sequences are potentially useful for resolving closely related dinoflagellates.
Collapse
Affiliation(s)
- Jiamin He
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yulin Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Sitong Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Minglei Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yujie Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|
17
|
Howe-Kerr LI, Knochel AM, Meyer MD, Sims JA, Karrick CE, Grupstra CGB, Veglia AJ, Thurber AR, Vega Thurber RL, Correa AMS. Filamentous virus-like particles are present in coral dinoflagellates across genera and ocean basins. THE ISME JOURNAL 2023; 17:2389-2402. [PMID: 37907732 PMCID: PMC10689786 DOI: 10.1038/s41396-023-01526-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023]
Abstract
Filamentous viruses are hypothesized to play a role in stony coral tissue loss disease (SCTLD) through infection of the endosymbiotic dinoflagellates (Family Symbiodiniaceae) of corals. To evaluate this hypothesis, it is critical to understand the global distribution of filamentous virus infections across the genetic diversity of Symbiodiniaceae hosts. Using transmission electron microscopy, we demonstrate that filamentous virus-like particles (VLPs) are present in over 60% of Symbiodiniaceae cells (genus Cladocopium) within Pacific corals (Acropora hyacinthus, Porites c.f. lobata); these VLPs are more prevalent in Symbiodiniaceae of in situ colonies experiencing heat stress. Symbiodiniaceae expelled from A. hyacinthus also contain filamentous VLPs, and these cells are more degraded than their in hospite counterparts. Similar to VLPs reported from SCTLD-affected Caribbean reefs, VLPs range from ~150 to 1500 nm in length and 16-37 nm in diameter and appear to constitute various stages in a replication cycle. Finally, we demonstrate that SCTLD-affected corals containing filamentous VLPs are dominated by diverse Symbiodiniaceae lineages from the genera Breviolum, Cladocopium, and Durusdinium. Although this study cannot definitively confirm or refute the role of filamentous VLPs in SCTLD, it demonstrates that filamentous VLPs are not solely observed in SCTLD-affected corals or reef regions, nor are they solely associated with corals dominated by members of a particular Symbiodiniaceae genus. We hypothesize that filamentous viruses are a widespread, common group that infects Symbiodiniaceae. Genomic characterization of these viruses and empirical tests of the impacts of filamentous virus infection on Symbiodiniaceae and coral colonies should be prioritized.
Collapse
Affiliation(s)
| | - Anna M Knochel
- BioSciences Department, Rice University, Houston, TX, USA
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX, USA
| | - Jordan A Sims
- BioSciences Department, Rice University, Houston, TX, USA
- Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | | | - Carsten G B Grupstra
- BioSciences Department, Rice University, Houston, TX, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Alex J Veglia
- BioSciences Department, Rice University, Houston, TX, USA
- Department of Biology, University of Puerto Rico, Mayagüez, PR, USA
| | - Andrew R Thurber
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
- College of Earth Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | | | - Adrienne M S Correa
- BioSciences Department, Rice University, Houston, TX, USA.
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
| |
Collapse
|
18
|
Kemp DW, Hoadley KD, Lewis AM, Wham DC, Smith RT, Warner ME, LaJeunesse TC. Thermotolerant coral-algal mutualisms maintain high rates of nutrient transfer while exposed to heat stress. Proc Biol Sci 2023; 290:20231403. [PMID: 37727091 PMCID: PMC10509592 DOI: 10.1098/rspb.2023.1403] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023] Open
Abstract
Symbiotic mutualisms are essential to ecosystems and numerous species across the tree of life. For reef-building corals, the benefits of their association with endosymbiotic dinoflagellates differ within and across taxa, and nutrient exchange between these partners is influenced by environmental conditions. Furthermore, it is widely assumed that corals associated with symbionts in the genus Durusdinium tolerate high thermal stress at the expense of lower nutrient exchange to support coral growth. We traced both inorganic carbon (H13CO3-) and nitrate (15NO3-) uptake by divergent symbiont species and quantified nutrient transfer to the host coral under normal temperatures as well as in colonies exposed to high thermal stress. Colonies representative of diverse coral taxa associated with Durusdinium trenchii or Cladocopium spp. exhibited similar nutrient exchange under ambient conditions. By contrast, heat-exposed colonies with D. trenchii experienced less physiological stress than conspecifics with Cladocopium spp. while high carbon assimilation and nutrient transfer to the host was maintained. This discovery differs from the prevailing notion that these mutualisms inevitably suffer trade-offs in physiological performance. These findings emphasize that many host-symbiont combinations adapted to high-temperature equatorial environments are high-functioning mutualisms; and why their increased prevalence is likely to be important to the future productivity and stability of coral reef ecosystems.
Collapse
Affiliation(s)
- Dustin W. Kemp
- Department of Biology, University of Alabama at Birmingham, AL, USA
| | | | - Allison M. Lewis
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Drew C. Wham
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Robin T. Smith
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, VI, USA
| | - Mark E. Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| | - Todd C. LaJeunesse
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
19
|
Wang C, Zheng X, Kvitt H, Sheng H, Sun D, Niu G, Tchernov D, Shi T. Lineage-specific symbionts mediate differential coral responses to thermal stress. MICROBIOME 2023; 11:211. [PMID: 37752514 PMCID: PMC10521517 DOI: 10.1186/s40168-023-01653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Ocean warming is a leading cause of increasing episodes of coral bleaching, the dissociation between coral hosts and their dinoflagellate algal symbionts in the family Symbiodiniaceae. While the diversity and flexibility of Symbiodiniaceae is presumably responsible for variations in coral response to physical stressors such as elevated temperature, there is little data directly comparing physiological performance that accounts for symbiont identity associated with the same coral host species. Here, using Pocillopora damicornis harboring genotypically distinct Symbiodiniaceae strains, we examined the physiological responses of the coral holobiont and the dynamics of symbiont community change under thermal stress in a laboratory-controlled experiment. RESULTS We found that P. damicornis dominated with symbionts of metahaplotype D1-D4-D6 in the genus Durusdinium (i.e., PdD holobiont) was more robust to thermal stress than its counterpart with symbionts of metahaplotype C42-C1-C1b-C1c in the genus Cladocopium (i.e., PdC holobiont). Under ambient temperature, however, the thermally sensitive Cladocopium spp. exhibited higher photosynthetic efficiency and translocated more fixed carbon to the host, likely facilitating faster coral growth and calcification. Moreover, we observed a thermally induced increase in Durusdinium proportion in the PdC holobiont; however, this "symbiont shuffling" in the background was overwhelmed by the overall Cladocopium dominance, which coincided with faster coral bleaching and reduced calcification. CONCLUSIONS These findings support that lineage-specific symbiont dominance is a driver of distinct coral responses to thermal stress. In addition, we found that "symbiont shuffling" may begin with stress-forced, subtle changes in the rare biosphere to eventually trade off growth for increased resilience. Furthermore, the flexibility in corals' association with thermally tolerant symbiont lineages to adapt or acclimatize to future warming oceans should be viewed with conservative optimism as the current rate of environmental changes may outpace the evolutionary capabilities of corals. Video Abstract.
Collapse
Affiliation(s)
- Chenying Wang
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xinqing Zheng
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
- Observation and Research Station of Wetland Ecosystem in the Beibu Gulf, Ministry of Natural Resources, Beihai, 536015, China.
| | - Hagit Kvitt
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel
- Israel Oceanographic and Limnological Research, National Center for Mariculture, 88112, Eilat, Israel
| | - Huaxia Sheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Danye Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Gaofeng Niu
- Marine Genomics and Biotechnology Program, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Dan Tchernov
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel.
| | - Tuo Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Marine Genomics and Biotechnology Program, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510000, China.
| |
Collapse
|
20
|
Anthony CJ, Lock C, Bentlage B. Rapid, high-throughput phenotypic profiling of endosymbiotic dinoflagellates (Symbiodiniaceae) using benchtop flow cytometry. PLoS One 2023; 18:e0290649. [PMID: 37708174 PMCID: PMC10501577 DOI: 10.1371/journal.pone.0290649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/05/2023] [Indexed: 09/16/2023] Open
Abstract
Endosymbiotic dinoflagellates (Family Symbiodiniaceae) are the primary producer of energy for many cnidarians, including corals. The intricate coral-dinoflagellate symbiotic relationship is becoming increasingly important under climate change, as its breakdown leads to mass coral bleaching and often mortality. Despite methodological progress, assessing the phenotypic traits of Symbiodiniaceae in-hospite remains a complex task. Bio-optics, biochemistry, or "-omics" techniques are expensive, often inaccessible to investigators, or lack the resolution required to understand single-cell phenotypic states within endosymbiotic dinoflagellate assemblages. To help address this issue, we developed a protocol that collects information on cell autofluorescence, shape, and size to simultaneously generate phenotypic profiles for thousands of Symbiodiniaceae cells, thus revealing phenotypic variance of the Symbiodiniaceae assemblage to the resolution of single cells. As flow cytometry is adopted as a robust and efficient method for cell counting, integration of our protocol into existing workflows allows researchers to acquire a new level of resolution for studies examining the acclimation and adaptation strategies of Symbiodiniaceae assemblages.
Collapse
Affiliation(s)
| | - Colin Lock
- Marine Laboratory, University of Guam, Mangilao, Guam, United States of America
| | - Bastian Bentlage
- Marine Laboratory, University of Guam, Mangilao, Guam, United States of America
| |
Collapse
|
21
|
McRae CJ, Keshavmurthy S, Chen HK, Ye ZM, Meng PJ, Rosset SL, Huang WB, Chen CA, Fan TY, Côté IM. Baseline dynamics of Symbiodiniaceae genera and photochemical efficiency in corals from reefs with different thermal histories. PeerJ 2023; 11:e15421. [PMID: 37283898 PMCID: PMC10239617 DOI: 10.7717/peerj.15421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
Ocean warming and marine heatwaves induced by climate change are impacting coral reefs globally, leading to coral bleaching and mortality. Yet, coral resistance and resilience to warming are not uniform across reef sites and corals can show inter- and intraspecific variability. To understand changes in coral health and to elucidate mechanisms of coral thermal tolerance, baseline data on the dynamics of coral holobiont performance under non-stressed conditions are needed. We monitored the seasonal dynamics of algal symbionts (family Symbiodiniaceae) hosted by corals from a chronically warmed and thermally variable reef compared to a thermally stable reef in southern Taiwan over 15 months. We assessed the genera and photochemical efficiency of Symbiodiniaceae in three coral species: Acropora nana, Pocillopora acuta, and Porites lutea. Both Durusdinium and Cladocopium were present in all coral species at both reef sites across all seasons, but general trends in their detection (based on qPCR cycle) varied between sites and among species. Photochemical efficiency (i.e., maximum quantum yield; Fv/Fm) was relatively similar between reef sites but differed consistently among species; no clear evidence of seasonal trends in Fv/Fm was found. Quantifying natural Symbiodiniaceae dynamics can help facilitate a more comprehensive interpretation of thermal tolerance response as well as plasticity potential of the coral holobiont.
Collapse
Affiliation(s)
- Crystal J McRae
- Department of Planning and Research, National Museum of Marine Biology & Aquarium, Checheng, Pingtung, Taiwan
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Hung-Kai Chen
- Department of Planning and Research, National Museum of Marine Biology & Aquarium, Checheng, Pingtung, Taiwan
| | - Zong-Min Ye
- Department of Planning and Research, National Museum of Marine Biology & Aquarium, Checheng, Pingtung, Taiwan
| | - Pei-Jie Meng
- Department of Planning and Research, National Museum of Marine Biology & Aquarium, Checheng, Pingtung, Taiwan
- Graduate Institute of Marine Biology, National Dong Hwa University, Checheng, Pingtung, Taiwan
| | - Sabrina L Rosset
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Wen-Bin Huang
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Shoufeng, Hualien, Taiwan
| | | | - Tung-Yung Fan
- Department of Planning and Research, National Museum of Marine Biology & Aquarium, Checheng, Pingtung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Isabelle M Côté
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|