1
|
Woodruff DC, Curtice BD, Foster JR. Seis-ing up the Super-Morrison formation sauropods. J Anat 2024. [PMID: 38978276 DOI: 10.1111/joa.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
The Upper Jurassic Morrison Formation sauropods Diplodocus (formerly "Seismosaurus") hallorum and Supersaurus vivianae are quantifiably the largest dinosaurian taxa from the formation, as well as being among the largest dinosaurs in the world. Their extreme body size (in particular body length, c. 50+ m) has fascinated the paleontological community since their discoveries and has sparked an ongoing discussion on the trends and limits of Morrison Formation sauropod body size. Although not an undeviating proxy, often the largest and skeletally most mature specimens are among the rarest (as exemplified in Triceratops). While their body size has no phylogenetic bearing, the extreme size and potential eco and biological significance of these two sauropod taxa are frequently discussed. Whether these rare and titanically proportioned sauropod specimens are large-bodied, senescent or both is an often-repeating rhetoric. To definitively make maturational inferences about these taxa, we osteohistologically sampled the holotype of D. hallorum (NMMNH P-25079) and the second known specimen of S. vivianae (WDC DMJ-021). Our age-determinant and maturational assessments indicate that both specimens were skeletally mature at their respective age of death. Retrocalculation methods for D. hallorum NMMNH P-25079 produce a maximum age-at-death estimation of 60 years, whereas S. vivianae WDC DMJ-021 lived well past skeletal maturity-so much so that reliable retrocalculated ages cannot be accurately determined at this time. Additionally, the rarity of such large sauropods within the Morrison Formation might be more parsimoniously explained as relating to their maturity as opposed to representing aberrant taxa on the Morrison landscape.
Collapse
Affiliation(s)
- D Cary Woodruff
- Phillip and Patricia Frost Museum of Science, Miami, Florida, USA
- Museum of the Rockies, Bozeman, Montana, USA
| | | | - John R Foster
- Utah Field House of Natural History State Park Museum, Vernal, Utah, USA
| |
Collapse
|
2
|
Jasinski SE, Sullivan RM, Carter AM, Johnson EH, Dalman SG, Zariwala J, Currie PJ. Osteology and reassessment of Dineobellator notohesperus, a southern eudromaeosaur (Theropoda: Dromaeosauridae: Eudromaeosauria) from the latest Cretaceous of New Mexico. Anat Rec (Hoboken) 2023; 306:1712-1756. [PMID: 36342817 DOI: 10.1002/ar.25103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/11/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
Abstract
Dromaeosaurids (Theropoda: Dromaeosauridae), a group of dynamic, swift predators, have a sparse fossil record, particularly at the end of the Cretaceous Period. The recently described Dineobellator notohesperus, consisting of a partial skeleton from the Upper Cretaceous (Maastrichtian) of New Mexico, is the only diagnostic dromaeosaurid to be recovered from the latest Cretaceous of the southwestern United States. Reinterpreted and newly described material include several caudal vertebrae, portions of the right radius and pubis, and an additional ungual, tentatively inferred to be from manual digit III. Unique features, particularly those of the humerus, unguals, and caudal vertebrae, distinguish D. notohesperus from other known dromaeosaurids. This material indicates different physical attributes among dromaeosaurids, such as use of the forearms, strength in the hands and feet, and mobility of the tail. Several bones in the holotype exhibit abnormal growth and are inferred to be pathologic features resulting from an injury or disease. Similar lengths of the humerus imply Dineobellator and Deinonychus were of similar size, at least regarding length and/or height, although the more gracile nature of the humerus implies Dineobellator was a more lightly built predator. A new phylogenetic analysis recovers D. notohesperus as a dromaeosaurid outside other previously known and named clades. Theropod composition of the Naashoibito Member theropod fauna is like those found in the more northern Late Cretaceous North American ecosystems. Differences in tooth morphologies among recovered theropod teeth from the Naashoibito Member also implies D. notohesperus was not the only dromaeosaurid present in its environment.
Collapse
Affiliation(s)
- Steven E Jasinski
- Department of Environmental Science and Sustainability, Harrisburg University, Harrisburg, Pennsylvania, USA
- Don Sundquist Center of Excellence in Paleontology, Johnson City, Tennessee, USA
| | - Robert M Sullivan
- New Mexico Museum of Natural History and Science, Albuquerque, New Mexico, USA
| | - Aja M Carter
- Penn Engineering - GRASP Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erynn H Johnson
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
- Paleontological Research Institution, Ithaca, New York, USA
| | - Sebastian G Dalman
- New Mexico Museum of Natural History and Science, Albuquerque, New Mexico, USA
| | - Juned Zariwala
- Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Philip J Currie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Hedrick BP. Dots on a screen: The past, present, and future of morphometrics in the study of nonavian dinosaurs. Anat Rec (Hoboken) 2023. [PMID: 36922704 DOI: 10.1002/ar.25183] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/28/2022] [Accepted: 02/12/2023] [Indexed: 03/18/2023]
Abstract
Using morphometrics to study nonavian dinosaur fossils is a practice that predates the origin of the word "dinosaur." By the 1970s, linear morphometrics had become established as a valuable tool for analyzing intra- and interspecific variation in nonavian dinosaurs. With the advent of more recent techniques such as geometric morphometrics and more advanced statistical approaches, morphometric analyses of nonavian dinosaurs have proliferated, granting unprecedented insight into many aspects of their biology and evolution. I outline the past, present, and future of morphometrics as applied to the study of nonavian dinosaurs zeroing in on five aspects of nonavian dinosaur paleobiology where morphometrics has been widely utilized to advance our knowledge: systematics, sexual dimorphism, locomotion, macroevolution, and trackways. Morphometric methods are especially susceptible to taphonomic distortion. As such, the impact of taphonomic distortion on original fossil shape is discussed as are current and future methods for quantifying and accounting for distortion with the goal of reducing the taphonomic noise to biological signal ratio. Finally, the future of morphometrics in nonavian dinosaur paleobiology is discussed as paleobiologists move into a "virtual paleobiology" framework, whereby digital renditions of fossils are captured via methods such as photogrammetry and computed tomography. These primary data form the basis for three-dimensional (3D) geometric morphometric analyses along with a slew of other forms of analyses. These 3D specimen data form part of the extended specimen and help to democratize paleobiology, unlocking the specimen from the physical museum and making the specimen available to researchers across the world.
Collapse
Affiliation(s)
- Brandon P Hedrick
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Common evolutionary origin of acoustic communication in choanate vertebrates. Nat Commun 2022; 13:6089. [PMID: 36284092 PMCID: PMC9596459 DOI: 10.1038/s41467-022-33741-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Acoustic communication, broadly distributed along the vertebrate phylogeny, plays a fundamental role in parental care, mate attraction and various other behaviours. Despite its importance, comparatively less is known about the evolutionary roots of acoustic communication. Phylogenetic comparative analyses can provide insights into the deep time evolutionary origin of acoustic communication, but they are often plagued by missing data from key species. Here we present evidence for 53 species of four major clades (turtles, tuatara, caecilian and lungfish) in the form of vocal recordings and contextual behavioural information accompanying sound production. This and a broad literature-based dataset evidence acoustic abilities in several groups previously considered non-vocal. Critically, phylogenetic analyses encompassing 1800 species of choanate vertebrates reconstructs acoustic communication as a homologous trait, and suggests that it is at least as old as the last common ancestor of all choanate vertebrates, that lived approx. 407 million years before present.
Collapse
|
5
|
Mallon JC, Evans DC, Zhang Y, Xing H. Rare juvenile material constrains estimation of skeletal allometry in Gryposaurus notabilis (Dinosauria: Hadrosauridae). Anat Rec (Hoboken) 2022. [PMID: 35792557 DOI: 10.1002/ar.25021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/11/2022]
Abstract
In studying the skeletal allometry of any vertebrate, it is important to sample the ontogenetic extremes to ensure the accuracy of parameter estimation; this is particularly true for fossil taxa, where sampling of ontogenetic series is incomplete and sporadic. Previous studies have examined allometry in the skull of the duck-billed dinosaur Gryposaurus notabilis, but these did not include individuals smaller than ~65% the maximum known size (based on linear dimensions). Here, we report on the two smallest known examples of this species (a mostly complete skeleton and a partial skull), which are ~37% the known maximal size of G. notabilis. Osteohistology indicates that these represent individuals ~2 years of age. Allometric analysis demonstrates that most aspects of the skull of G. notabilis grew isometrically, although the height of the nasal arch grew with positive allometry. Early in the ontogeny of G. notabilis, the dentary teeth possessed secondary ridges, which were lost later in life. This finding has important bearing on hadrosaurid tooth taxonomy. The limb proportions of G. notabilis largely grew isometrically (or with weak negative allometry, at most), like some other hadrosaurids, suggesting that the species did not undergo a gait shift with increasing age (unless it occurred very early in ontogeny). We argue that the lack of significant locomotory performance compensation exhibited by young hadrosaurids helps to explain why they apparently formed small, mutualistic aggregations, presumably for protection from large predators.
Collapse
Affiliation(s)
- Jordan C Mallon
- Beaty Centre for Species Discovery and Palaeobiology Section, Canadian Museum of Nature, Ottawa, Ontario, Canada.,Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada
| | - David C Evans
- Royal Ontario Museum, Toronto, Ontario, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Yuguang Zhang
- Beijing Museum of Natural History, Beijing, People's Republic of China
| | - Hai Xing
- Beaty Centre for Species Discovery and Palaeobiology Section, Canadian Museum of Nature, Ottawa, Ontario, Canada.,Beijing Museum of Natural History, Beijing, People's Republic of China.,State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Miller CV, Pittman M. The diet of early birds based on modern and fossil evidence and a new framework for its reconstruction. Biol Rev Camb Philos Soc 2021; 96:2058-2112. [PMID: 34240530 PMCID: PMC8519158 DOI: 10.1111/brv.12743] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Birds are some of the most diverse organisms on Earth, with species inhabiting a wide variety of niches across every major biome. As such, birds are vital to our understanding of modern ecosystems. Unfortunately, our understanding of the evolutionary history of modern ecosystems is hampered by knowledge gaps in the origin of modern bird diversity and ecosystem ecology. A crucial part of addressing these shortcomings is improving our understanding of the earliest birds, the non-avian avialans (i.e. non-crown birds), particularly of their diet. The diet of non-avian avialans has been a matter of debate, in large part because of the ambiguous qualitative approaches that have been used to reconstruct it. Here we review methods for determining diet in modern and fossil avians (i.e. crown birds) as well as non-avian theropods, and comment on their usefulness when applied to non-avian avialans. We use this to propose a set of comparable, quantitative approaches to ascertain fossil bird diet and on this basis provide a consensus of what we currently know about fossil bird diet. While no single approach can precisely predict diet in birds, each can exclude some diets and narrow the dietary possibilities. We recommend combining (i) dental microwear, (ii) landmark-based muscular reconstruction, (iii) stable isotope geochemistry, (iv) body mass estimations, (v) traditional and/or geometric morphometric analysis, (vi) lever modelling, and (vii) finite element analysis to reconstruct fossil bird diet accurately. Our review provides specific methodologies to implement each approach and discusses complications future researchers should keep in mind. We note that current forms of assessment of dental mesowear, skull traditional morphometrics, geometric morphometrics, and certain stable isotope systems have yet to be proven effective at discerning fossil bird diet. On this basis we report the current state of knowledge of non-avian avialan diet which remains very incomplete. The ancestral dietary condition in non-avian avialans remains unclear due to scarce data and contradictory evidence in Archaeopteryx. Among early non-avian pygostylians, Confuciusornis has finite element analysis and mechanical advantage evidence pointing to herbivory, whilst Sapeornis only has mechanical advantage evidence indicating granivory, agreeing with fossilised ingested material known for this taxon. The enantiornithine ornithothoracine Shenqiornis has mechanical advantage and pedal morphometric evidence pointing to carnivory. In the hongshanornithid ornithuromorph Hongshanornis only mechanical advantage evidence indicates granivory, but this agrees with evidence of gastrolith ingestion in this taxon. Mechanical advantage and ingested fish support carnivory in the songlingornithid ornithuromorph Yanornis. Due to the sparsity of robust dietary assignments, no clear trends in non-avian avialan dietary evolution have yet emerged. Dietary diversity seems to increase through time, but this is a preservational bias associated with a predominance of data from the Early Cretaceous Jehol Lagerstätte. With this new framework and our synthesis of the current knowledge of non-avian avialan diet, we expect dietary knowledge and evolutionary trends to become much clearer in the coming years, especially as fossils from other locations and climates are found. This will allow for a deeper and more robust understanding of the role birds played in Mesozoic ecosystems and how this developed into their pivotal role in modern ecosystems.
Collapse
Affiliation(s)
- Case Vincent Miller
- Vertebrate Palaeontology Laboratory, Research Division for Earth and Planetary ScienceThe University of Hong KongPokfulamHong Kong SARChina
| | - Michael Pittman
- Vertebrate Palaeontology Laboratory, Research Division for Earth and Planetary ScienceThe University of Hong KongPokfulamHong Kong SARChina
| |
Collapse
|
7
|
Holland B, Bell PR, Fanti F, Hamilton SM, Larson DW, Sissons R, Sullivan C, Vavrek MJ, Wang Y, Campione NE. Taphonomy and taxonomy of a juvenile lambeosaurine (Ornithischia: Hadrosauridae) bonebed from the late Campanian Wapiti Formation of northwestern Alberta, Canada. PeerJ 2021; 9:e11290. [PMID: 33987001 PMCID: PMC8103918 DOI: 10.7717/peerj.11290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/26/2021] [Indexed: 01/26/2023] Open
Abstract
Hadrosaurid (duck-billed) dinosaur bonebeds are exceedingly prevalent in upper Cretaceous (Campanian–Maastrichtian) strata from the Midwest of North America (especially Alberta, Canada, and Montana, U.S.A) but are less frequently documented from more northern regions. The Wapiti Formation (Campanian–Maastrichtian) of northwestern Alberta is a largely untapped resource of terrestrial palaeontological information missing from southern Alberta due to the deposition of the marine Bearpaw Formation. In 2018, the Boreal Alberta Dinosaur Project rediscovered the Spring Creek Bonebed, which had been lost since 2002, along the northern bank of the Wapiti River, southwest of Grande Prairie. Earlier excavations and observations of the Spring Creek Bonebed suggested that the site yielded young hadrosaurines. Continued work in 2018 and 2019 recovered ~300 specimens that included a minimum of eight individuals, based on the number of right humeri. The morphology of several recovered cranial elements unequivocally supports lambeosaurine affinities, making the Spring Creek sample the first documented occurrence of lambeosaurines in the Wapiti Formation. The overall size range and histology of the bones found at the site indicate that these animals were uniformly late juveniles, suggesting that age segregation was a life history strategy among hadrosaurids. Given the considerable size attained by the Spring Creek lambeosaurines, they were probably segregated from the breeding population during nesting or caring for young, rather than due to different diet and locomotory requirements. Dynamic aspects of life history, such as age segregation, may well have contributed to the highly diverse and cosmopolitan nature of Late Cretaceous hadrosaurids.
Collapse
Affiliation(s)
- Brayden Holland
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Phil R Bell
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Federico Fanti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Alma Mater Studiorum, Università di Bologna, Bologna, Italy
| | - Samantha M Hamilton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Derek W Larson
- Philip J. Currie Dinosaur Museum, Wembley, Alberta, Canada
| | - Robin Sissons
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Corwin Sullivan
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Philip J. Currie Dinosaur Museum, Wembley, Alberta, Canada
| | - Matthew J Vavrek
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
| | - Yanyin Wang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nicolás E Campione
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| |
Collapse
|
8
|
McDonald AT, Wolfe DG, Freedman Fowler EA, Gates TA. A new brachylophosaurin (Dinosauria: Hadrosauridae) from the Upper Cretaceous Menefee Formation of New Mexico. PeerJ 2021; 9:e11084. [PMID: 33859873 PMCID: PMC8020878 DOI: 10.7717/peerj.11084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/18/2021] [Indexed: 11/20/2022] Open
Abstract
Brachylophosaurini is a clade of hadrosaurid dinosaurs from the Campanian of western North America. Although well-known from northern localities in Montana and Alberta, including abundant material of Brachylophosaurus canadensis and Maiasaura peeblesorum and the holotypes of Acristavus gagslarsoni and Probrachylophosaurus bergei, material from southern localities in Utah and Colorado is restricted to a partial skull referred to A. gagslarsoni and several indeterminate specimens. Here we describe Ornatops incantatus gen. et sp. nov., a new brachylophosaurin known from a partial skeleton from the Allison Member of the Menefee Formation in New Mexico. Ornatops is the first brachylophosaurin reported from New Mexico and the southernmost occurrence of the clade. Ornatops shares with Probrachylophosaurus and Brachylophosaurus a caudally expanded nasofrontal suture on the frontals, but also exhibits an autapomorphic nasofrontal suture morphology, with a horizontal rostral region and elevated caudal region with two prominent parasagittal bumps, which is different from other brachylophosaurin specimens, including juvenile and adult Brachylophosaurus. A phylogenetic analysis places Ornatops in a trichotomy with Probrachylophosaurus and Brachylophosaurus, with Maiasaura and Acristavus as successive outgroups.
Collapse
Affiliation(s)
| | | | | | - Terry A. Gates
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
9
|
Gates TA, Evans DC, Sertich JJW. Description and rediagnosis of the crested hadrosaurid (Ornithopoda) dinosaur Parasaurolophus cyrtocristatus on the basis of new cranial remains. PeerJ 2021; 9:e10669. [PMID: 33552721 PMCID: PMC7842145 DOI: 10.7717/peerj.10669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/08/2020] [Indexed: 11/28/2022] Open
Abstract
For nearly 60 years, skulls of Parasaurolophus species have been differentiated primarily on the basis of crest shape rather than on unique morphologic characters of other cranial elements. Complicating matters is the fact that crests dramatically change shape throughout ontogeny. Without a complete growth series, it has become difficult to assess the taxonomic distinctness of each species through the lens of allometric growth. Parasaurolophus cyrtocristatus has proven to be especially troublesome to assess because of the poorly preserved nature of the type and only skull. A new, partial skull from the Fossil Forest Member of the Fruitland Formation—the same geologic unit as the type specimen—is the first opportunity to re-diagnose this species as well as redefine the genus with many new traits. An undescribed, short-crested subadult skull from the Kaiparowits Formation of Utah previously assigned to cf. P. cyrtocristatus allows detailed comparisons to be made between the unnamed Utah taxon and the material of this species from the type locality. We find that several characteristics of the squamosal, supraoccipital, and premaxilla shared between the referred skull and the type skull are unique to P. cyrtocristatus (senso stricto) within the genus, irrespective of the overall crest shape. A phylogenetic analysis that includes six new characters posits that P. cyrtocristatus and P. tubicen are sister taxa, and that the latter does not share a closest common ancestor with the long-crested P. walkeri as previously hypothesized. This result helps to explain why both taxa are found in northeastern New Mexico, USA and in sequential geologic units (Fruitland Formation and Kirtland Formation, respectively). Additionally, the exquisitely preserved new skull provides the first opportunity to unequivocally identify the osteological make-up of the Parasaurolophus cranial crest. Unlike in previous reconstructions, the crest composition in Parasaurolophus follows what is seen in other lambeosaurines such as Corythosaurus, where the dorsal process of the premaxilla dominates the crest, with the nasal forming 80% of the ventral paired tubes, and the lateral premaxillary process acting a lateral cover between the dorsal and ventral tubes. The skull of P. cyrtocristatus is still incompletely known, so more complete material will likely reveal new features that further differentiate this species and aid in determining the pace of ornamental crest evolution.
Collapse
Affiliation(s)
- Terry A Gates
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Paleontology Unit, North Carolina Museum of Natural Sciences, Raleigh, NC, USA.,Department of Geology, Field Museum of Natural History, Chicago, IL, USA
| | - David C Evans
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | - Joseph J W Sertich
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, CO, USA
| |
Collapse
|
10
|
Bertozzo F, Manucci F, Dempsey M, Tanke DH, Evans DC, Ruffell A, Murphy E. Description and etiology of paleopathological lesions in the type specimen of Parasaurolophus walkeri (Dinosauria: Hadrosauridae), with proposed reconstructions of the nuchal ligament. J Anat 2020; 238:1055-1069. [PMID: 33289113 PMCID: PMC8053592 DOI: 10.1111/joa.13363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 01/08/2023] Open
Abstract
Paleopathology, or the study of ancient injuries and diseases, can enable the ecology and life history of extinct taxa to be deciphered. Large-bodied ornithopods are the dinosaurs with the highest frequencies of paleopathology reported to-date. Among these, the crested hadrosaurid Parasaurolophus walkeri is one of the most famous, largely due to its dramatic elongated and tubular nasal crest. The holotype of Parasaurolophus walkeri at the Royal Ontario Museum, Canada, displays several paleopathologies that have not been discussed in detail previously: a dental lesion in the left maxilla, perhaps related to periodontal disease; callus formation associated with fractures in three dorsal ribs; a discoidal overgrowth above dorsal neural spines six and seven; a cranially oriented spine in dorsal seven, that merges distally with spine six; a V-shaped gap between dorsal spines seven and eight; and a ventral projection of the pubic process of the ilium which covers, and is fused with, the lateral side of the iliac process of the pubis. These lesions suggest that the animal suffered from one or more traumatic events, with the main one causing a suite of injuries to the anterior aspect of the thorax. The presence of several lesions in a single individual is a rare observation and, in comparison with a substantial database of hadrosaur paleopathological lesions, has the potential to reveal new information about the biology and behavior of these ornithopods. The precise etiology of the iliac abnormality is still unclear, although it is thought to have been an indirect consequence of the anterior trauma. The discoidal overgrowth above the two neural spines also seems to be secondary to the severe trauma inflicted on the ribs and dorsal spines, and probably represents post-traumatic ossification of the base of the nuchal ligament. The existence of this structure has previously been considered in hadrosaurs and dinosaurs more generally through comparison of origin and insertion sites in modern diapsids (Rhea americana, Alligator mississippiensis, Iguana iguana), but its presence, structure, and origin-attachment sites are still debated. The V-shaped gap is hypothesized as representing the point between the stresses of the nuchal ligament, pulling the anterior neural spines forward, and the ossified tendons pulling the posterior neural spines backward. Different reconstructions of the morphology of the structure based on the pathological conditions affecting the neural spines of ROM 768 are proposed. Finally, we review the history of reconstructions for Parasaurolophus walkeri showing how erroneous misconceptions have been perpetuated over time or have led to the development of new hypotheses, including the wide neck model supported in the current research.
Collapse
Affiliation(s)
- Filippo Bertozzo
- School of Natural and Built EnvironmentQueen’s University BelfastBelfastUK
- CI2PaleoSociedade de Historia NaturalTorres VedrasPortugal
| | - Fabio Manucci
- Associazione Paleontologica Paleoartistica ItalianaParmaItaly
| | - Matthew Dempsey
- Department of Musculoskeletal & Ageing ScienceUniversity of LiverpoolLiverpoolUK
| | | | - David C. Evans
- Royal Ontario MuseumTorontoONCanada
- Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Alastair Ruffell
- School of Natural and Built EnvironmentQueen’s University BelfastBelfastUK
| | - Eileen Murphy
- School of Natural and Built EnvironmentQueen’s University BelfastBelfastUK
| |
Collapse
|
11
|
Prieto‐Márquez A, Garcia‐Porta J, Joshi SH, Norell MA, Makovicky PJ. Modularity and heterochrony in the evolution of the ceratopsian dinosaur frill. Ecol Evol 2020; 10:6288-6309. [PMID: 32724514 PMCID: PMC7381594 DOI: 10.1002/ece3.6361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
The fossil record provides compelling examples of heterochrony at macroevolutionary scales such as the peramorphic giant antlers of the Irish elk. Heterochrony has also been invoked in the evolution of the distinctive cranial frill of ceratopsian dinosaurs such as Triceratops. Although ceratopsian frills vary in size, shape, and ornamentation, quantitative analyses that would allow for testing hypotheses of heterochrony are lacking. Here, we use geometric morphometrics to examine frill shape variation across ceratopsian diversity and within four species preserving growth series. We then test whether the frill constitutes an evolvable module both across and within species, and compare growth trajectories of taxa with ontogenetic growth series to identify heterochronic processes. Evolution of the ceratopsian frill consisted primarily of progressive expansion of its caudal and caudolateral margins, with morphospace occupation following taxonomic groups. Although taphonomic distortion represents a complicating factor, our data support modularity both across and within species. Peramorphosis played an important role in frill evolution, with acceleration operating early in neoceratopsian evolution followed by progenesis in later diverging cornosaurian ceratopsians. Peramorphic evolution of the ceratopsian frill may have been facilitated by the decoupling of this structure from the jaw musculature, an inference that predicts an expansion of morphospace occupation and higher evolutionary rates among ceratopsids as indeed borne out by our data. However, denser sampling of the meager record of early-diverging taxa is required to test this further.
Collapse
Affiliation(s)
- Albert Prieto‐Márquez
- Institut Català de Paleontologia Miquel CrusafontUniversitat Autònoma de BarcelonaBarcelonaSpain
- Integrative Research CenterField Museum of Natural HistoryChicagoILUSA
| | - Joan Garcia‐Porta
- CREAFBarcelonaSpain
- Department of BiologyWashington UniversitySt. LouisMOUSA
| | - Shantanu H. Joshi
- Department of Neurology and Ahmanson Lovelace Brain Mapping CenterUniversity of California, Los AngelesLos AngelesCAUSA
| | - Mark A. Norell
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Peter J. Makovicky
- Integrative Research CenterField Museum of Natural HistoryChicagoILUSA
- Department of Earth and Environmental SciencesUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
12
|
Green TL, Gignac PM. Osteological description of casque ontogeny in the southern cassowary (Casuarius casuarius) using micro-CT imaging. Anat Rec (Hoboken) 2020; 304:461-479. [PMID: 32558300 DOI: 10.1002/ar.24477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/23/2020] [Accepted: 05/02/2020] [Indexed: 11/06/2022]
Abstract
Extant cassowaries (Casuarius) are unique flightless birds found in the tropics of Indo-Australia. They have garnered substantial attention from anatomists with focus centered on the bony makeup and function of their conspicuous cranial casques, located dorsally above the orbits and neurocranium. The osteological patterning of the casque has been formally described previously; however, there are differing interpretations between authors. These variable descriptions suggest that an anatomical understanding of casque anatomy and its constituent elements may be enhanced by developmental studies aimed at further elucidating this bizarre structure. In the present study, we clarify casque osteology of the southern cassowary (C. casuarius) by detailing casque anatomy across an extensive growth series for the first time. We used micro-computed tomography (μCT) imaging to visualize embryonic development and post-hatching ontogeny through adulthood. We also sampled closely related emus (Dromaius novaehollandiae) and ostriches (Struthio camelus) to provide valuable comparative context. We found that southern cassowary casques are comprised of three paired (i.e., nasals, lacrimals, frontals) and two unpaired elements (i.e., mesethmoid, median casque element). Although lacrimals have rarely been considered as casque elements, the contribution to the casque structure was evident in μCT images. The median casque element has often been cited as a portion of the mesethmoid. However, through comparisons between immature C. casuarius and D. novaehollandiae, we document the median casque element as a distinct unit from the mesethmoid.
Collapse
Affiliation(s)
- Todd L Green
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Paul M Gignac
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA.,Division of Paleontology, American Museum of Natural History, New York, New York, USA.,MicroCT Imaging Consortium for Research and Outreach, Fayetteville, Arkansas, USA
| |
Collapse
|
13
|
Angst D, Barnoud J, Cornette R, Chinsamy A. Sex and Ontogenetic Variation in the Crest ofNumida meleagris: Implications for Crested Vertebrates. Anat Rec (Hoboken) 2019; 303:1018-1034. [DOI: 10.1002/ar.24275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 05/10/2019] [Accepted: 06/08/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Delphine Angst
- Department of Biological SciencesUniversity of Cape Town Cape Town South Africa
- School of Earth SciencesUniversity of Bristol Bristol UK
| | - Jonathan Barnoud
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced MaterialsUniversity of Groningen Groningen The Netherlands
| | - Raphaël Cornette
- UMR 7205 Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne UniversitéEPHE Paris France
| | - Anusuya Chinsamy
- Department of Biological SciencesUniversity of Cape Town Cape Town South Africa
| |
Collapse
|
14
|
Bailleul AM, O’Connor J, Schweitzer MH. Dinosaur paleohistology: review, trends and new avenues of investigation. PeerJ 2019; 7:e7764. [PMID: 31579624 PMCID: PMC6768056 DOI: 10.7717/peerj.7764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
In the mid-19th century, the discovery that bone microstructure in fossils could be preserved with fidelity provided a new avenue for understanding the evolution, function, and physiology of long extinct organisms. This resulted in the establishment of paleohistology as a subdiscipline of vertebrate paleontology, which has contributed greatly to our current understanding of dinosaurs as living organisms. Dinosaurs are part of a larger group of reptiles, the Archosauria, of which there are only two surviving lineages, crocodilians and birds. The goal of this review is to document progress in the field of archosaur paleohistology, focusing in particular on the Dinosauria. We briefly review the "growth age" of dinosaur histology, which has encompassed new and varied directions since its emergence in the 1950s, resulting in a shift in the scientific perception of non-avian dinosaurs from "sluggish" reptiles to fast-growing animals with relatively high metabolic rates. However, fundamental changes in growth occurred within the sister clade Aves, and we discuss this major evolutionary transition as elucidated by histology. We then review recent innovations in the field, demonstrating how paleohistology has changed and expanded to address a diversity of non-growth related questions. For example, dinosaur skull histology has elucidated the formation of curious cranial tissues (e.g., "metaplastic" tissues), and helped to clarify the evolution and function of oral adaptations, such as the dental batteries of duck-billed dinosaurs. Lastly, we discuss the development of novel techniques with which to investigate not only the skeletal tissues of dinosaurs, but also less-studied soft-tissues, through molecular paleontology and paleohistochemistry-recently developed branches of paleohistology-and the future potential of these methods to further explore fossilized tissues. We suggest that the combination of histological and molecular methods holds great potential for examining the preserved tissues of dinosaurs, basal birds, and their extant relatives. This review demonstrates the importance of traditional bone paleohistology, but also highlights the need for innovation and new analytical directions to improve and broaden the utility of paleohistology, in the pursuit of more diverse, highly specific, and sensitive methods with which to further investigate important paleontological questions.
Collapse
Affiliation(s)
- Alida M. Bailleul
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Jingmai O’Connor
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Mary H. Schweitzer
- Department of Biology, North Carolina State University, Raleigh, NC, USA
- North Carolina Museum of Natural Science, Raleigh, NC, USA
- Department of Geology, Lund University, Lund, Sweden
- Museum of the Rockies, Montana State University, Bozeman, MT, USA
| |
Collapse
|
15
|
Gates TA, Tsogtbaatar K, Zanno LE, Chinzorig T, Watabe M. A new iguanodontian (Dinosauria: Ornithopoda) from the Early Cretaceous of Mongolia. PeerJ 2018; 6:e5300. [PMID: 30083450 PMCID: PMC6078070 DOI: 10.7717/peerj.5300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/03/2018] [Indexed: 11/20/2022] Open
Abstract
We describe a new iguanodontian ornithopod, Choyrodon barsboldi gen. et sp. nov. from the Albian-aged Khuren Dukh Formation of Mongolia based on several partial skeletons interpreted to represent a subadult growth stage based on osteohistological features. This new taxon is diagnosed by many autapomorphies of the maxilla, nasal, lacrimal, opisthotic, predentary, and surangular. Choyrodon displays an unusual combination of traits, possessing an open antorbital fenestra (a primitive ornithopod trait) together with derived features such as a downturned dentary and enlarged narial fenestra. Histological imaging suggests that the type specimen of Choyrodon would have been a subadult at the time of death. Phylogenetic analysis of two different character matrices do not posit Choyrodon to be the sister taxon or to be more primitive than the iguanodontian Altirhinus kurzanovi, which is found in the same formation. The only resolved relationship of this new taxon is that it was hypothesized to be a sister-taxon with the North American species Eolambia caroljonesa. Though discovered in the same formation and Choyrodon being smaller-bodied than Altirhinus, it does not appear that the former species is an ontogimorph of the latter. Differences in morphology and results of the phylogenetic analyses support their distinction although more specimens of both species will allow better refinement of their uniqueness.
Collapse
Affiliation(s)
- Terry A Gates
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Paleontology Unit, North Carolina Museum of Natural Sciences, Raleigh, NC, USA
| | - Khishigjav Tsogtbaatar
- Department of Paleontology, Institute of Paleontology and Geology, Mongolian Academy of Sciences, Ulaanbataar, Mongolia
| | - Lindsay E Zanno
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Paleontology Unit, North Carolina Museum of Natural Sciences, Raleigh, NC, USA
| | - Tsogtbaatar Chinzorig
- Department of Paleontology, Institute of Paleontology and Geology, Mongolian Academy of Sciences, Ulaanbataar, Mongolia.,Department of Natural History and Earth Sciences, Faculty of Sciences, Hokkaido University, Hokkaido University Museum, Sapporo, Japan
| | - Mahito Watabe
- School of International Liberal Studies, Waseda University, Tokyo, Japan
| |
Collapse
|
16
|
Hone DWE, Farke AA, Wedel MJ. Ontogeny and the fossil record: what, if anything, is an adult dinosaur? Biol Lett 2016; 12:20150947. [PMID: 26888916 DOI: 10.1098/rsbl.2015.0947] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Identification of the ontogenetic status of an extinct organism is complex, and yet this underpins major areas of research, from taxonomy and systematics to ecology and evolution. In the case of the non-avialan dinosaurs, at least some were reproductively mature before they were skeletally mature, and a lack of consensus on how to define an 'adult' animal causes problems for even basic scientific investigations. Here we review the current methods available to determine the age of non-avialan dinosaurs, discuss the definitions of different ontogenetic stages, and summarize the implications of these disparate definitions for dinosaur palaeontology. Most critically, a growing body of evidence suggests that many dinosaurs that would be considered 'adults' in a modern-day field study are considered 'juveniles' or 'subadults' in palaeontological contexts.
Collapse
Affiliation(s)
- David W E Hone
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Andrew A Farke
- Raymond M. Alf Museum of Paleontology, Claremont, CA, USA
| | - Mathew J Wedel
- Department of Anatomy, College of Osteopathic Medicine of the Pacific and College of Podiatric Medicine, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
17
|
Nabavizadeh A. Evolutionary Trends in the Jaw Adductor Mechanics of Ornithischian Dinosaurs. Anat Rec (Hoboken) 2016; 299:271-94. [PMID: 26692539 DOI: 10.1002/ar.23306] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 09/04/2015] [Accepted: 11/02/2015] [Indexed: 11/11/2022]
Abstract
Jaw mechanics in ornithischian dinosaurs have been widely studied for well over a century. Most of these studies, however, use only one or few taxa within a given ornithischian clade as a model for feeding mechanics across the entire clade. In this study, mandibular mechanical advantages among 52 ornithischian genera spanning all subclades are calculated using 2D lever arm methods. These lever arm calculations estimate the effect of jaw shape and difference in adductor muscle line of action on relative bite forces along the jaw. Results show major instances of overlap between taxa in tooth positions at which there was highest mechanical advantage. A relatively low bite force is seen across the tooth row among thyreophorans (e.g., stegosaurs and ankylosaurs), with variation among taxa. A convergent transition occurs from a more evenly distributed bite force along the jaw in basal ornithopods and basal marginocephalians to a strong distal bite force in hadrosaurids and ceratopsids, respectively. Accordingly, adductor muscle vector angles show repeated trends from a mid-range caudodorsal orientation in basal ornithischians to a decrease in vector angles indicating more caudally oriented jaw movements in derived taxa (e.g., derived thyreophorans, basal ornithopods, lambeosaurines, pachycephalosaurs, and derived ceratopsids). Analyses of hypothetical jaw morphologies were also performed, indicating that both the coronoid process and lowered jaw joint increase moment arm length therefore increasing mechanical advantage of the jaw apparatus. Adaptive trends in craniomandibular anatomy show that ornithischians evolved more complex feeding apparatuses within different clades as well as morphological convergences between clades.
Collapse
Affiliation(s)
- Ali Nabavizadeh
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
18
|
Hill RV, D'Emic MD, Bever GS, Norell MA. A complex hyobranchial apparatus in a Cretaceous dinosaur and the antiquity of avian paraglossalia. Zool J Linn Soc 2015. [DOI: 10.1111/zoj.12293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Robert V. Hill
- Department of Anatomy; New York Institute of Technology College of Osteopathic Medicine; Northern Boulevard Old Westbury NY 11568-8000 USA
| | - Michael D. D'Emic
- Department of Anatomical Sciences; Stony Brook University; HSC-T8, Room 040 Stony Brook NY 11794-8081 USA
| | - G. S. Bever
- Department of Anatomy; New York Institute of Technology College of Osteopathic Medicine; Northern Boulevard Old Westbury NY 11568-8000 USA
- Division of Paleontology; American Museum of Natural History; New York NY 10024 USA
| | - Mark A. Norell
- Division of Paleontology; American Museum of Natural History; New York NY 10024 USA
| |
Collapse
|
19
|
Cruzado-Caballero P, Fortuny J, Llacer S, Canudo J. Paleoneuroanatomy of the European lambeosaurine dinosaur Arenysaurus ardevoli. PeerJ 2015; 3:e802. [PMID: 25755931 PMCID: PMC4349051 DOI: 10.7717/peerj.802] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/05/2015] [Indexed: 11/20/2022] Open
Abstract
The neuroanatomy of hadrosaurid dinosaurs is well known from North America and Asia. In Europe only a few cranial remains have been recovered that include the braincase. Arenysaurus is the first European endocast for which the paleoneuroanatomy has been studied. The resulting data have enabled us to draw ontogenetic, phylogenetic and functional inferences. Arenysaurus preserves the endocast and the inner ear. This cranial material was CT scanned, and a 3D-model was generated. The endocast morphology supports a general pattern for hadrosaurids with some characters that distinguish it to a subfamily level, such as a brain cavity that is anteroposteriorly shorter or the angle of the major axis of the cerebral hemisphere to the horizontal in lambeosaurines. Both these characters are present in the endocast of Arenysaurus. Osteological features indicate an adult ontogenetic stage, while some paleoneuroanatomical features are indicative of a subadult ontogenetic stage. It is hypothesized that the presence of puzzling mixture of characters that suggest different ontogenetic stages for this specimen may reflect some degree of dwarfism in Arenysaurus. Regarding the inner ear, its structure shows differences from the ornithopod clade with respect to the height of the semicircular canals. These differences could lead to a decrease in the compensatory movements of eyes and head, with important implications for the paleobiology and behavior of hadrosaurid taxa such as Edmontosaurus, Parasaurolophus and Arenysaurus. The endocranial morphology of European hadrosaurids sheds new light on the evolution of this group and may reflect the conditions in the archipelago where these animals lived during the Late Cretaceous.
Collapse
Affiliation(s)
- P Cruzado-Caballero
- CONICET-Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Río Negro , Roca, Río Negro , Argentina ; Área de Paleontología, Facultad de Ciencias, Universidad de Zaragoza , C/Pedro Cerbuna, Zaragoza , Spain
| | - J Fortuny
- Institut Català de Paleontologia Miquel Crusafont, C/Escola Industrial , Sabadell , Spain ; Departament de Resistència de Materials i Estructures a l'Enginyeria, Universitat Politècnica de Catalunya , Terrassa , Spain
| | - S Llacer
- Institut Català de Paleontologia Miquel Crusafont, C/Escola Industrial , Sabadell , Spain
| | - Ji Canudo
- Área de Paleontología, Facultad de Ciencias, Universidad de Zaragoza , C/Pedro Cerbuna, Zaragoza , Spain
| |
Collapse
|
20
|
High-school student finds trumpet-headed dinosaur. Nature 2013. [DOI: 10.1038/nature.2013.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|