1
|
Cardoso PM, Hill LJ, Villela HDM, Vilela CLS, Assis JM, Rosado PM, Rosado JG, Chacon MA, Majzoub ME, Duarte GAS, Thomas T, Peixoto RS. Localization and symbiotic status of probiotics in the coral holobiont. mSystems 2024; 9:e0026124. [PMID: 38606974 PMCID: PMC11097643 DOI: 10.1128/msystems.00261-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Corals establish symbiotic relationships with microorganisms, especially endosymbiotic photosynthetic algae. Although other microbes have been commonly detected in coral tissues, their identity and beneficial functions for their host are unclear. Here, we confirm the beneficial outcomes of the inoculation of bacteria selected as probiotics and use fluorescence in situ hybridization (FISH) to define their localization in the coral Pocillopora damicornis. Our results show the first evidence of the inherent presence of Halomonas sp. and Cobetia sp. in native coral tissues, even before their inoculation. Furthermore, the relative enrichment of these coral tissue-associated bacteria through their inoculation in corals correlates with health improvements, such as increases in photosynthetic potential, and productivity. Our study suggests the symbiotic status of Halomonas sp. and Cobetia sp. in corals by indicating their localization within coral gastrodermis and epidermis and correlating their increased relative abundance through active inoculation with beneficial outcomes for the holobiont. This knowledge is crucial to facilitate the screening and application of probiotics that may not be transient members of the coral microbiome. IMPORTANCE Despite the promising results indicating the beneficial outcomes associated with the application of probiotics in corals and some scarce knowledge regarding the identity of bacterial cells found within the coral tissue, the correlation between these two aspects is still missing. This gap limits our understanding of the actual diversity of coral-associated bacteria and whether these symbionts are beneficial. Some researchers, for example, have been suggesting that probiotic screening should only focus on the very few known tissue-associated bacteria, such as Endozoicomonas sp., assuming that the currently tested probiotics are not tissue-associated. Here, we provide specific FISH probes for Halomonas sp. and Cobetia sp., expand our knowledge of the identity of coral-associated bacteria and confirm the probiotic status of the tested probiotics. The presence of these beneficial microorganisms for corals (BMCs) inside host tissues and gastric cavities also supports the notion that direct interactions with the host may underpin their probiotic role. This is a new breakthrough; these results argue against the possibility that the positive effects of BMCs are due to factors that are not related to a direct symbiotic interaction, for example, that the host simply feeds on inoculated bacteria or that the bacteria change the water quality.
Collapse
Affiliation(s)
- P. M. Cardoso
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - L. J. Hill
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - H. D. M. Villela
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - C. L. S. Vilela
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J. M. Assis
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P. M. Rosado
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - J. G. Rosado
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - M. A. Chacon
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M. E. Majzoub
- Center for Marine Science and Innovation; School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - G. A. S. Duarte
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - T. Thomas
- Center for Marine Science and Innovation; School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - R. S. Peixoto
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Biology Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological, Environmental and Engineering Sciences Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
2
|
Dungan AM, Tandon K, Jameson V, Gotze CR, Blackall LL, van Oppen MJH. A targeted approach to enrich host-associated bacteria for metagenomic sequencing. FEMS MICROBES 2023; 5:xtad021. [PMID: 38264162 PMCID: PMC10804224 DOI: 10.1093/femsmc/xtad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 01/25/2024] Open
Abstract
Multicellular eukaryotic organisms are hosts to communities of bacteria that reside on or inside their tissues. Often the eukaryotic members of the system contribute to high proportions of metagenomic sequencing reads, making it challenging to achieve sufficient sequencing depth to evaluate bacterial ecology. Stony corals are one such complex community; however, separation of bacterial from eukaryotic (primarily coral and algal symbiont) cells has so far not been successful. Using a combination of hybridization chain reaction fluorescence in situ hybridization and fluorescence activated cell sorting (HCR-FISH + FACS), we sorted two populations of bacteria from five genotypes of the coral Acropora loripes, targeting (i) Endozoicomonas spp, and (ii) all other bacteria. NovaSeq sequencing resulted in 67-91 M reads per sample, 55%-90% of which were identified as bacterial. Most reads were taxonomically assigned to the key coral-associated family, Endozoicomonadaceae, with Vibrionaceae also abundant. Endozoicomonadaceae were 5x more abundant in the 'Endozoicomonas' population, highlighting the success of the dual-labelling approach. This method effectively enriched coral samples for bacteria with <1% contamination from host and algal symbionts. The application of this method will allow researchers to decipher the functional potential of coral-associated bacteria. This method can also be adapted to accommodate other host-associated communities.
Collapse
Affiliation(s)
- Ashley M Dungan
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kshitij Tandon
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vanta Jameson
- Melbourne Cytometry Platform, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Cecilie Ravn Gotze
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
- Reef Recovery, Restoration and Adaptation Program, Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Linda L Blackall
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
- Reef Recovery, Restoration and Adaptation Program, Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| |
Collapse
|
3
|
Hawthorn A, Berzins IK, Dennis MM, Kiupel M, Newton AL, Peters EC, Reyes VA, Work TM. An introduction to lesions and histology of scleractinian corals. Vet Pathol 2023; 60:529-546. [PMID: 37519147 DOI: 10.1177/03009858231189289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Stony corals (Scleractinia) are in the Phylum Cnidaria (cnidae referring to various types of stinging cells). They may be solitary or colonial, but all secrete an external, supporting aragonite skeleton. Large, colonial members of this phylum are responsible for the accretion of coral reefs in tropical and subtropical waters that form the foundations of the most biodiverse marine ecosystems. Coral reefs worldwide, but particularly in the Caribbean, are experiencing unprecedented levels of disease, resulting in reef degradation. Most coral diseases remain poorly described and lack clear case definitions, while the etiologies and pathogenesis are even more elusive. This introductory guide is focused on reef-building corals and describes basic gross and microscopic lesions in these corals in order to serve as an invitation to other veterinary pathologists to play a critical role in defining and advancing the field of coral pathology.
Collapse
Affiliation(s)
- Aine Hawthorn
- University of Wisconsin-Madison, Madison, WI
- U.S. Geological Survey, Seattle, WA
| | - Ilze K Berzins
- University of Florida, Gainesville, FL
- One Water, One Health, LLC, Golden Valley, MN
| | | | | | - Alisa L Newton
- ZooQuatic Laboratory, LLC, Baltimore, MD
- OCEARCH, Park City, UT
| | | | | | | |
Collapse
|
4
|
Xu M, Cheng K, Xiao B, Tong M, Cai Z, Jong MC, Chen G, Zhou J. Bacterial Communities Vary from Different Scleractinian Coral Species and between Bleached and Non-Bleached Corals. Microbiol Spectr 2023; 11:e0491022. [PMID: 37191552 PMCID: PMC10269541 DOI: 10.1128/spectrum.04910-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Bleaching is one of the most relevant factors implicated in the integrity of coral reef ecosystems, with the increasing frequency and intensity of damaging events representing a serious threat to reef biodiversity. Here, we analyzed changes in coral-associated bacteria from three types of non-bleached and bleached scleractinian corals (Acropora digitifera, Galaxea fascicularis, and Porites pukoensis) in Hainan Luhuitou peninsula coastal areas. The community structure of symbiotic bacteria differed significantly among the three apparently healthy corals. The bleached corals had higher bacterial alpha diversity and some specific bacteria genera, including Ruegeria, Methyloceanibacter, Filomicrobium, Halioglobus, Rubripirellula, Rhodopirellula, Silicimonas, Blastopirellula, Sva0996 marine group, Woeseia, and unclassified_c_Gammaproteobacteria, were consistently increased in bleached groups. Network analysis revealed significantly different degrees of modularity between bleached and non-bleached groups at the bacterial genus level, and a higher proportion of links was dominated by positive co-occurrences. Functional prediction analysis illustrated that coral-associated bacteria remained relatively consistent in the bleached and non-bleached groups. Structure equation modeling revealed that the bacterial community diversity and function were directly influenced by host and environment factors. These findings suggested that coral-associated bacterial responses to bleaching occur in a host-dependent manner, informing novel strategies for restoring coral and aiding adaption to bleaching stress. IMPORTANCE Accumulating evidence indicates that coral-associated bacteria play an important role in the health of holobionts. However, the variability of the symbiotic bacterial community structure among coral species with different coral health statuses remains largely unknown. Here, we investigated three apparent non-bleached (healthy) and bleached coral species (sampled in situ), involving related symbiotic bacterial profiles, including composition, alpha diversity, network relationship, and potential function. Structural equation modeling analysis was used to analyze the relationship between coral status and abiotic and biotic factors. The bacterial community structure of different groups was shown to exhibit host-specific traits. Both host and environmental impacts had primary effects on coral-associated microbial communities. Future studies are needed to identify the mechanisms that mediate divergent microbial consortia.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, People’s Republic of China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong Province, People’s Republic of China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| | - Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, People’s Republic of China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan, People’s Republic of China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, People’s Republic of China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong Province, People’s Republic of China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| |
Collapse
|
5
|
Wada N, Iguchi A, Urabe Y, Yoshioka Y, Abe N, Takase K, Hayashi S, Kawanabe S, Sato Y, Tang SL, Mano N. Microbial mat compositions and localization patterns explain the virulence of black band disease in corals. NPJ Biofilms Microbiomes 2023; 9:15. [PMID: 37015942 PMCID: PMC10073141 DOI: 10.1038/s41522-023-00381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
Black band disease (BBD) in corals is characterized by a distinctive, band-like microbial mat, which spreads across the tissues and often kills infected colonies. The microbial mat is dominated by cyanobacteria but also commonly contains sulfide-oxidizing bacteria (SOB), sulfate-reducing bacteria (SRB), and other microbes. The migration rate in BBD varies across different environmental conditions, including temperature, light, and pH. However, whether variations in the migration rates reflect differences in the microbial consortium within the BBD mat remains unknown. Here, we show that the micro-scale surface structure, bacterial composition, and spatial distribution differed across BBD lesions with different migration rates. The migration rate was positively correlated with the relative abundance of potential SOBs belonging to Arcobacteraceae localized in the middle layer within the mat and negatively correlated with the relative abundance of other potential SOBs belonging to Rhodobacteraceae. Our study highlights the microbial composition in BBD as an important determinant of virulence.
Collapse
Affiliation(s)
- Naohisa Wada
- Biodiversity Research Center, Academia Sinica, No.128, Sec 2, Academia Rd, Nangang, Taipei, 11529, Taiwan
- Department of Marine Science and Resources, College of Bioresource Science, Nihon University, Fujisawa, Kanagawa, 252-0813, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
- Research Laboratory on Environmentally-conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8567, Japan
| | - Yuta Urabe
- Department of Marine Science and Resources, College of Bioresource Science, Nihon University, Fujisawa, Kanagawa, 252-0813, Japan
| | - Yuki Yoshioka
- Department of Bioresources Engineering, National Institute of Technology, Okinawa College, 905 Henoko, Nago-City, Okinawa, 905-2192, Japan
| | - Natsumi Abe
- Department of Marine Science and Resources, College of Bioresource Science, Nihon University, Fujisawa, Kanagawa, 252-0813, Japan
| | - Kazuki Takase
- Department of Marine Science and Resources, College of Bioresource Science, Nihon University, Fujisawa, Kanagawa, 252-0813, Japan
| | - Shuji Hayashi
- Department of Marine Science and Resources, College of Bioresource Science, Nihon University, Fujisawa, Kanagawa, 252-0813, Japan
| | - Saeko Kawanabe
- Department of Marine Science and Resources, College of Bioresource Science, Nihon University, Fujisawa, Kanagawa, 252-0813, Japan
| | - Yui Sato
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, No.128, Sec 2, Academia Rd, Nangang, Taipei, 11529, Taiwan.
| | - Nobuhiro Mano
- Department of Marine Science and Resources, College of Bioresource Science, Nihon University, Fujisawa, Kanagawa, 252-0813, Japan.
| |
Collapse
|
6
|
van Oppen MJH, Raina J. Coral holobiont research needs spatial analyses at the microbial scale. Environ Microbiol 2023; 25:179-183. [PMID: 36209397 PMCID: PMC10100515 DOI: 10.1111/1462-2920.16237] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Madeleine J. H. van Oppen
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Jean‐Baptiste Raina
- Climate Change Cluster (C3)University of Technology SydneySydneyNew South WalesAustralia
| |
Collapse
|
7
|
Vega Thurber R, Schmeltzer ER, Grottoli AG, van Woesik R, Toonen RJ, Warner M, Dobson KL, McLachlan RH, Barott K, Barshis DJ, Baumann J, Chapron L, Combosch DJ, Correa AMS, DeCarlo TM, Hagedorn M, Hédouin L, Hoadley K, Felis T, Ferrier-Pagès C, Kenkel C, Kuffner IB, Matthews J, Medina M, Meyer C, Oster C, Price J, Putnam HM, Sawall Y. Unified methods in collecting, preserving, and archiving coral bleaching and restoration specimens to increase sample utility and interdisciplinary collaboration. PeerJ 2022; 10:e14176. [PMID: 36345483 PMCID: PMC9636870 DOI: 10.7717/peerj.14176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022] Open
Abstract
Coral reefs are declining worldwide primarily because of bleaching and subsequent mortality resulting from thermal stress. Currently, extensive efforts to engage in more holistic research and restoration endeavors have considerably expanded the techniques applied to examine coral samples. Despite such advances, coral bleaching and restoration studies are often conducted within a specific disciplinary focus, where specimens are collected, preserved, and archived in ways that are not always conducive to further downstream analyses by specialists in other disciplines. This approach may prevent the full utilization of unexpended specimens, leading to siloed research, duplicative efforts, unnecessary loss of additional corals to research endeavors, and overall increased costs. A recent US National Science Foundation-sponsored workshop set out to consolidate our collective knowledge across the disciplines of Omics, Physiology, and Microscopy and Imaging regarding the methods used for coral sample collection, preservation, and archiving. Here, we highlight knowledge gaps and propose some simple steps for collecting, preserving, and archiving coral-bleaching specimens that can increase the impact of individual coral bleaching and restoration studies, as well as foster additional analyses and future discoveries through collaboration. Rapid freezing of samples in liquid nitrogen or placing at -80 °C to -20 °C is optimal for most Omics and Physiology studies with a few exceptions; however, freezing samples removes the potential for many Microscopy and Imaging-based analyses due to the alteration of tissue integrity during freezing. For Microscopy and Imaging, samples are best stored in aldehydes. The use of sterile gloves and receptacles during collection supports the downstream analysis of host-associated bacterial and viral communities which are particularly germane to disease and restoration efforts. Across all disciplines, the use of aseptic techniques during collection, preservation, and archiving maximizes the research potential of coral specimens and allows for the greatest number of possible downstream analyses.
Collapse
Affiliation(s)
- Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Emily R. Schmeltzer
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Andréa G. Grottoli
- School of Earth Sciences, Ohio State University, Columbus, OH, United States
| | - Robert van Woesik
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, Fl, United States
| | - Robert J. Toonen
- Hawai’i Institute of Marine Biology, University of Hawai’i at Mānoa, Kāne’ohe, HI, United States
| | - Mark Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States
| | - Kerri L. Dobson
- School of Earth Sciences, Ohio State University, Columbus, OH, United States
| | - Rowan H. McLachlan
- Department of Microbiology, Oregon State University, Corvallis, OR, United States,School of Earth Sciences, Ohio State University, Columbus, OH, United States
| | - Katie Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel J. Barshis
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States
| | - Justin Baumann
- Biology Department, Bowdoin College, Brunswick, ME, United States
| | - Leila Chapron
- School of Earth Sciences, Ohio State University, Columbus, OH, United States
| | | | | | - Thomas M. DeCarlo
- College of Natural and Computational Sciences, Hawai’i Pacific University, Honolulu, HI, United States
| | - Mary Hagedorn
- Hawai’i Institute of Marine Biology, University of Hawai’i at Mānoa, Kāne’ohe, HI, United States,Conservation Biology Institute, Smithsonian, Kāne’ohe, HI, United States
| | - Laetitia Hédouin
- Centre de Recherches Insulaires et Observatoire de l’Environnement, Chargée de Recherches CNRS, Papetō’ai, Moorea, French Polynesia
| | - Kenneth Hoadley
- Department of Biological Sciences, University of Alabama – Tuscaloosa, Tuscaloosa, AL, United States
| | - Thomas Felis
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | | | - Carly Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | | | - Jennifer Matthews
- Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Christopher Meyer
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian, Washington DC, United States
| | - Corinna Oster
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - James Price
- School of Earth Sciences, Ohio State University, Columbus, OH, United States
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - Yvonne Sawall
- Bermuda Institute of Ocean Sciences, St. George’s, St. George’s, Bermuda
| |
Collapse
|
8
|
Silva DP, Epstein HE, Vega Thurber RL. Best practices for generating and analyzing 16S rRNA amplicon data to track coral microbiome dynamics. Front Microbiol 2022; 13:1007877. [PMID: 36891260 PMCID: PMC9987214 DOI: 10.3389/fmicb.2022.1007877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/30/2022] [Indexed: 02/22/2023] Open
Abstract
Over the past two decades, researchers have searched for methods to better understand the relationship between coral hosts and their microbiomes. Data on how coral-associated bacteria are involved in their host's responses to stressors that cause bleaching, disease, and other deleterious effects can elucidate how they may mediate, ameliorate, and exacerbate interactions between the coral and the surrounding environment. At the same time tracking coral bacteria dynamics can reveal previously undiscovered mechanisms of coral resilience, acclimatization, and evolutionary adaptation. Although modern techniques have reduced the cost of conducting high-throughput sequencing of coral microbes, to explore the composition, function, and dynamics of coral-associated bacteria, it is necessary that the entire procedure, from collection to sequencing, and subsequent analysis be carried out in an objective and effective way. Corals represent a difficult host with which to work, and unique steps in the process of microbiome assessment are necessary to avoid inaccuracies or unusable data in microbiome libraries, such as off-target amplification of host sequences. Here, we review, compare and contrast, and recommend methods for sample collection, preservation, and processing (e.g., DNA extraction) pipelines to best generate 16S amplicon libraries with the aim of tracking coral microbiome dynamics. We also discuss some basic quality assurance and general bioinformatic methods to analyze the diversity, composition, and taxonomic profiles of the microbiomes. This review aims to be a generalizable guide for researchers interested in starting and modifying the molecular biology aspects of coral microbiome research, highlighting best practices and tricks of the trade.
Collapse
Affiliation(s)
- Denise P Silva
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Hannah E Epstein
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | | |
Collapse
|
9
|
Horio K, Takahashi H, Kobori T, Watanabe K, Aki T, Nakashimada Y, Okamura Y. Visualization of Gene Reciprocity among Lactic Acid Bacteria in Yogurt by RNase H-Assisted Rolling Circle Amplification-Fluorescence In Situ Hybridization. Microorganisms 2021; 9:1208. [PMID: 34204984 PMCID: PMC8228470 DOI: 10.3390/microorganisms9061208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, we developed an in situ mRNA detection method termed RNase H-assisted rolling circle amplification-fluorescence in situ hybridization (RHa-RCA-FISH), which can detect even short mRNA in a bacterial cell. However, because this FISH method is sensitive to the sample condition, it is necessary to find a suitable cell permeabilization and collection protocol. Here, we demonstrate its further applicability for detecting intrinsic mRNA expression using lactic acid bacteria (LAB) as a model consortium. Our results show that this method can visualize functional gene expression in LAB cells and can be used for monitoring the temporal transition of gene expression. In addition, we also confirmed that data obtained from bulk analyses such as RNA-seq or microarray do not always correspond to gene expression in individual cells. RHa-RCA-FISH will be a powerful tool to compensate for insufficient data from metatranscriptome analyses while clarifying the carriers of function in microbial consortia. By extending this technique to capture spatiotemporal microbial gene expression at the single-cell level, it will be able to characterize microbial interactions in phytoplankton-bacteria interactions.
Collapse
Affiliation(s)
- Kyohei Horio
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| | - Hirokazu Takahashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| | - Toshiro Kobori
- Division of Food Biotechnology, Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan;
| | - Kenshi Watanabe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| | - Tsunehiro Aki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| | - Yutaka Nakashimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| | - Yoshiko Okamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| |
Collapse
|
10
|
Costa RM, Cárdenas A, Loussert-Fonta C, Toullec G, Meibom A, Voolstra CR. Surface Topography, Bacterial Carrying Capacity, and the Prospect of Microbiome Manipulation in the Sea Anemone Coral Model Aiptasia. Front Microbiol 2021; 12:637834. [PMID: 33897642 PMCID: PMC8060496 DOI: 10.3389/fmicb.2021.637834] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Aiptasia is an emerging model organism to study cnidarian symbioses due to its taxonomic relatedness to other anthozoans such as stony corals and similarities of its microalgal and bacterial partners, complementing the existing Hydra (Hydrozoa) and Nematostella (Anthozoa) model systems. Despite the availability of studies characterizing the microbiomes of several natural Aiptasia populations and laboratory strains, knowledge on basic information, such as surface topography, bacterial carrying capacity, or the prospect of microbiome manipulation is lacking. Here we address these knowledge gaps. Our results show that the surface topographies of the model hydrozoan Hydra and anthozoans differ substantially, whereas the ultrastructural surface architecture of Aiptasia and stony corals is highly similar. Further, we determined a bacterial carrying capacity of ∼104 and ∼105 bacteria (i.e., colony forming units, CFUs) per polyp for aposymbiotic and symbiotic Aiptasia anemones, respectively, suggesting that the symbiotic status changes bacterial association/density. Microbiome transplants from Acropora humilis and Porites sp. to gnotobiotic Aiptasia showed that only a few foreign bacterial taxa were effective colonizers. Our results shed light on the putative difficulties of transplanting microbiomes between cnidarians in a manner that consistently changes microbial host association at large. At the same time, our study provides an avenue to identify bacterial taxa that exhibit broad ability to colonize different hosts as a starting point for cross-species microbiome manipulation. Our work is relevant in the context of microbial therapy (probiotics) and microbiome manipulation in corals and answers to the need of having cnidarian model systems to test the function of bacteria and their effect on holobiont biology. Taken together, we provide important foundation data to extend Aiptasia as a coral model for bacterial functional studies.
Collapse
Affiliation(s)
- Rúben M Costa
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Céline Loussert-Fonta
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gaëlle Toullec
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
| | - Christian R Voolstra
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
11
|
Energy depletion and opportunistic microbial colonisation in white syndrome lesions from corals across the Indo-Pacific. Sci Rep 2020; 10:19990. [PMID: 33203914 PMCID: PMC7672225 DOI: 10.1038/s41598-020-76792-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
Corals are dependent upon lipids as energy reserves to mount a metabolic response to biotic and abiotic challenges. This study profiled lipids, fatty acids, and microbial communities of healthy and white syndrome (WS) diseased colonies of Acropora hyacinthus sampled from reefs in Western Australia, the Great Barrier Reef, and Palmyra Atoll. Total lipid levels varied significantly among locations, though a consistent stepwise decrease from healthy tissues from healthy colonies (HH) to healthy tissue on WS-diseased colonies (HD; i.e. preceding the lesion boundary) to diseased tissue on diseased colonies (DD; i.e. lesion front) was observed, demonstrating a reduction in energy reserves. Lipids in HH tissues were comprised of high energy lipid classes, while HD and DD tissues contained greater proportions of structural lipids. Bacterial profiling through 16S rRNA gene sequencing and histology showed no bacterial taxa linked to WS causation. However, the relative abundance of Rhodobacteraceae-affiliated sequences increased in DD tissues, suggesting opportunistic proliferation of these taxa. While the cause of WS remains inconclusive, this study demonstrates that the lipid profiles of HD tissues was more similar to DD tissues than to HH tissues, reflecting a colony-wide systemic effect and provides insight into the metabolic immune response of WS-infected Indo-Pacific corals.
Collapse
|
12
|
Wada N, Yuasa H, Kajitani R, Gotoh Y, Ogura Y, Yoshimura D, Toyoda A, Tang SL, Higashimura Y, Sweatman H, Forsman Z, Bronstein O, Eyal G, Thongtham N, Itoh T, Hayashi T, Yasuda N. A ubiquitous subcuticular bacterial symbiont of a coral predator, the crown-of-thorns starfish, in the Indo-Pacific. MICROBIOME 2020; 8:123. [PMID: 32831146 PMCID: PMC7444263 DOI: 10.1186/s40168-020-00880-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Population outbreaks of the crown-of-thorns starfish (Acanthaster planci sensu lato; COTS), a primary predator of reef-building corals in the Indo-Pacific Ocean, are a major threat to coral reefs. While biological and ecological knowledge of COTS has been accumulating since the 1960s, little is known about its associated bacteria. The aim of this study was to provide fundamental information on the dominant COTS-associated bacteria through a multifaceted molecular approach. METHODS A total of 205 COTS individuals from 17 locations throughout the Indo-Pacific Ocean were examined for the presence of COTS-associated bacteria. We conducted 16S rRNA metabarcoding of COTS to determine the bacterial profiles of different parts of the body and generated a full-length 16S rRNA gene sequence from a single dominant bacterium, which we designated COTS27. We performed phylogenetic analysis to determine the taxonomy, screening of COTS27 across the Indo-Pacific, FISH to visualize it within the COTS tissues, and reconstruction of the bacterial genome from the hologenome sequence data. RESULTS We discovered that a single bacterium exists at high densities in the subcuticular space in COTS forming a biofilm-like structure between the cuticle and the epidermis. COTS27 belongs to a clade that presumably represents a distinct order (so-called marine spirochetes) in the phylum Spirochaetes and is universally present in COTS throughout the Indo-Pacific Ocean. The reconstructed genome of COTS27 includes some genetic traits that are probably linked to adaptation to marine environments and evolution as an extracellular endosymbiont in subcuticular spaces. CONCLUSIONS COTS27 can be found in three allopatric COTS species, ranging from the northern Red Sea to the Pacific, implying that the symbiotic relationship arose before the speciation events (approximately 2 million years ago). The universal association of COTS27 with COTS and nearly mono-specific association at least with the Indo-Pacific COTS provides a useful model system for studying symbiont-host interactions in marine invertebrates and may have applications for coral reef conservation. Video Abstract.
Collapse
Affiliation(s)
- Naohisa Wada
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, Miyazaki, 889-2192, Japan
- Biodiversity Research Center, Academia Sinica, No.128, Sec 2, Academia Rd, Nangang, Taipei, 11529, Taiwan
| | - Hideaki Yuasa
- School of Life Science and Technology, Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Rei Kajitani
- School of Life Science and Technology, Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Dai Yoshimura
- School of Life Science and Technology, Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, No.128, Sec 2, Academia Rd, Nangang, Taipei, 11529, Taiwan
| | - Yukihiro Higashimura
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, Miyazaki, 889-2192, Japan
| | - Hugh Sweatman
- Australian Institute of Marine Science, PMB No.3, Townsville, QLD, 4810, Australia
| | - Zac Forsman
- Hawai'i Institute of Marine Biology, School of Ocean & Earth Sciences & Technology, University of Hawai'i at Mānoa, Coconut Island, Kāne'ohe, HI, USA
| | - Omri Bronstein
- George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Gal Eyal
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | | | - Takehiko Itoh
- School of Life Science and Technology, Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Nina Yasuda
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, Miyazaki, 889-2192, Japan.
| |
Collapse
|
13
|
Damjanovic K, Menéndez P, Blackall LL, van Oppen MJH. Early Life Stages of a Common Broadcast Spawning Coral Associate with Specific Bacterial Communities Despite Lack of Internalized Bacteria. MICROBIAL ECOLOGY 2020; 79:706-719. [PMID: 31435691 DOI: 10.1007/s00248-019-01428-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Coral-associated bacteria are critical for the well-being of their host and may play essential roles during ontogeny, as suggested by the vertical transmission of some bacteria in brooding corals. Bacterial acquisition patterns in broadcast spawners remain uncertain, as 16S rRNA gene metabarcoding of coral early life stages suggests the presence of bacterial communities, which have not been detected by microscopic examinations. Here, we combined 16S rRNA gene metabarcoding with fluorescence in situ hybridization (FISH) microscopy to analyze bacterial assemblages in Acropora tenuis egg-sperm bundles, embryos, and larvae following a spawning event. Metabarcoding results indicated that A. tenuis offspring ≤ 4-day-old were associated with diverse and dynamic bacterial microbiomes, dominated by Rhodobacteraceae, Alteromonadaceae, and Oceanospirillaceae. While FISH analyses confirmed the lack of internalized bacteria in A. tenuis offspring, metabarcoding showed that even the earliest life stages examined (egg-sperm bundles and two-cell stages) were associated with a diverse bacterial community, suggesting the bacteria were confined to the mucus layer. These results can be explained by vertical transmission of certain taxa (mainly Endozoicomonas) in the mucus surrounding the gametes within bundles, or by horizontal bacterial transmission through the release of bacteria by spawning adults into the water column.
Collapse
Affiliation(s)
- Katarina Damjanovic
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Australian Institute of Marine Science, PMB No 3, Townsville MC, QLD, 4810, Australia.
| | - Patricia Menéndez
- Australian Institute of Marine Science, PMB No 3, Townsville MC, QLD, 4810, Australia
- Department of Econometrics and Business Statistics, Monash University, Clayton, VIC, 3800, Australia
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Australian Institute of Marine Science, PMB No 3, Townsville MC, QLD, 4810, Australia
| |
Collapse
|
14
|
Damjanovic K, Menéndez P, Blackall LL, Oppen MJH. Mixed‐mode bacterial transmission in the common brooding coral
Pocillopora acuta. Environ Microbiol 2019; 22:397-412. [DOI: 10.1111/1462-2920.14856] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/14/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Katarina Damjanovic
- School of BioSciences, The University of Melbourne Parkville Vic 3010 Australia
- Australian Institute of Marine Science PMB No 3, Townsville, MC 4810 Qld Australia
| | - Patricia Menéndez
- Australian Institute of Marine Science PMB No 3, Townsville, MC 4810 Qld Australia
- Department of Econometrics and Business Statistics Monash University Vic 3800 Australia
| | - Linda L. Blackall
- School of BioSciences, The University of Melbourne Parkville Vic 3010 Australia
| | - Madeleine J. H. Oppen
- School of BioSciences, The University of Melbourne Parkville Vic 3010 Australia
- Australian Institute of Marine Science PMB No 3, Townsville, MC 4810 Qld Australia
| |
Collapse
|
15
|
Wada N, Ishimochi M, Matsui T, Pollock FJ, Tang SL, Ainsworth TD, Willis BL, Mano N, Bourne DG. Characterization of coral-associated microbial aggregates (CAMAs) within tissues of the coral Acropora hyacinthus. Sci Rep 2019; 9:14662. [PMID: 31601819 PMCID: PMC6787259 DOI: 10.1038/s41598-019-49651-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/29/2019] [Indexed: 01/28/2023] Open
Abstract
Bacterial diversity associated with corals has been studied extensively, however, localization of bacterial associations within the holobiont is still poorly resolved. Here we provide novel insight into the localization of coral-associated microbial aggregates (CAMAs) within tissues of the coral Acropora hyacinthus. In total, 318 and 308 CAMAs were characterized via histological and fluorescent in situ hybridization (FISH) approaches respectively, and shown to be distributed extensively throughout coral tissues collected from five sites in Japan and Australia. The densities of CAMAs within the tissues were negatively correlated with the distance from the coastline (i.e. lowest densities at offshore sites). CAMAs were randomly distributed across the six coral tissue regions investigated. Within each CAMA, bacterial cells had similar morphological characteristics, but bacterial morphologies varied among CAMAs, with at least five distinct types identified. Identifying the location of microorganisms associated with the coral host is a prerequisite for understanding their contributions to fitness. Localization of tissue-specific communities housed within CAMAs is particularly important, as these communities are potentially important contributors to vital metabolic functions of the holobiont.
Collapse
Affiliation(s)
- Naohisa Wada
- Biodiversity Research Center, Academia Sinica, Nangang, 11529, Taipei, Taiwan
- Department of Marine Science and Resources, College of Bioresource Science, Nihon University, Fujisawa, 252-0813, Kanagawa, Japan
- AIMS@JCU, Townsville, 4811, QLD, Australia
| | - Mizuki Ishimochi
- Department of Marine Science and Resources, College of Bioresource Science, Nihon University, Fujisawa, 252-0813, Kanagawa, Japan
- Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Taeko Matsui
- Department of Marine Science and Resources, College of Bioresource Science, Nihon University, Fujisawa, 252-0813, Kanagawa, Japan
| | - F Joseph Pollock
- The Nature Conservancy, Caribbean Division, Coral Gables, FL, 33134, USA
- AIMS@JCU, Townsville, 4811, QLD, Australia
- Department of Biology, The Pennsylvania State University, State College, 16802, PA, USA
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Nangang, 11529, Taipei, Taiwan
| | - Tracy D Ainsworth
- School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Bette L Willis
- College of Science and Engineering, James Cook University, Townsville, 4811, QLD, Australia
- AIMS@JCU, Townsville, 4811, QLD, Australia
| | - Nobuhiro Mano
- Department of Marine Science and Resources, College of Bioresource Science, Nihon University, Fujisawa, 252-0813, Kanagawa, Japan.
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, 4811, QLD, Australia.
- AIMS@JCU, Townsville, 4811, QLD, Australia.
- Australian Institute of Marine Science, Townsville, 4810, QLD, Australia.
| |
Collapse
|
16
|
Damjanovic K, van Oppen MJH, Menéndez P, Blackall LL. Experimental Inoculation of Coral Recruits With Marine Bacteria Indicates Scope for Microbiome Manipulation in Acropora tenuis and Platygyra daedalea. Front Microbiol 2019; 10:1702. [PMID: 31396197 PMCID: PMC6668565 DOI: 10.3389/fmicb.2019.01702] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/10/2019] [Indexed: 12/19/2022] Open
Abstract
Coral-associated microorganisms are essential for maintaining the health of the coral holobiont by participating in nutrient cycling and protecting the coral host from pathogens. Under stressful conditions, disruption of the coral prokaryotic microbiome is linked to increased susceptibility to diseases and mortality. Inoculation of corals with beneficial microbes could confer enhanced stress tolerance to the host and may be a powerful tool to help corals thrive under challenging environmental conditions. Here, we explored the feasibility of coral early life stage microbiome manipulation by repeatedly inoculating coral recruits with a bacterial cocktail generated in the laboratory. Co-culturing the two species Acropora tenuis and Platygyra daedalea allowed us to simultaneously investigate the effect of host factors on the coral microbiome. Inoculation cocktails were regularly prepared from freshly grown pure bacterial cultures, which were hence assumed viable, and characterized via the optical density measurement of each individual strain put in suspension. Coral early recruits were inoculated seven times over 3 weeks and sampled once 36 h following the last inoculation event. At this time point, the cumulative inoculations with the bacterial cocktails had a strong effect on the bacterial community composition in recruits of both coral species. While the location of bacterial cells within the coral hosts was not assessed, metabarcoding using the 16S rRNA gene revealed that two and six of the seven bacterial strains administered through the cocktails were significantly enriched in inoculated recruits of A. tenuis and P. daedalea, respectively, compared to control recruits. Despite being reared in the same environment, A. tenuis and P. daedalea established significantly different bacterial communities, both in terms of taxonomic composition and diversity measurements. These findings indicate that coral host factors as well as the environmental bacterial pool play a role in shaping coral-associated bacterial community composition. Host factors may include microbe transmission mode (horizontal versus maternal) and host specificity. While the long-term stability of taxa included in the bacterial inocula as members of the host-associated microbiome remains to be evaluated, our results provide support for the feasibility of coral microbiome manipulation, at least in a laboratory setting.
Collapse
Affiliation(s)
- Katarina Damjanovic
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.,Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.,Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Patricia Menéndez
- Australian Institute of Marine Science, Townsville, QLD, Australia.,School of Mathematics and Physics, University of Queensland, Saint Lucia, QLD, Australia
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
17
|
Cooke I, Mead O, Whalen C, Boote C, Moya A, Ying H, Robbins S, Strugnell JM, Darling A, Miller D, Voolstra CR, Adamska M. Molecular techniques and their limitations shape our view of the holobiont. ZOOLOGY 2019; 137:125695. [PMID: 31759226 DOI: 10.1016/j.zool.2019.125695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 11/26/2022]
Abstract
It is now recognised that the biology of almost any organism cannot be fully understood without recognising the existence and potential functional importance of associated microbes. Arguably, the emergence of this holistic viewpoint may never have occurred without the development of a crucial molecular technique, 16S rDNA amplicon sequencing, which allowed microbial communities to be easily profiled across a broad range of contexts. A diverse array of molecular techniques are now used to profile microbial communities, infer their evolutionary histories, visualise them in host tissues, and measure their molecular activity. In this review, we examine each of these categories of measurement and inference with a focus on the questions they make tractable, and the degree to which their capabilities and limitations shape our view of the holobiont.
Collapse
Affiliation(s)
- Ira Cooke
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia.
| | - Oliver Mead
- ARC Centre of Excellence for Coral Reef Studies, Australian National University, Canberra, ACT, 2601, Australia; Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Casey Whalen
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Chloë Boote
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Aurelie Moya
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Hua Ying
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Steven Robbins
- Australian Center for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Jan M Strugnell
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia; Centre of Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, 4810, QLD, Australia; Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University, Melbourne, 3083, Australia
| | - Aaron Darling
- The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - David Miller
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | | | - Maja Adamska
- ARC Centre of Excellence for Coral Reef Studies, Australian National University, Canberra, ACT, 2601, Australia; Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | | |
Collapse
|
18
|
Miura N, Motone K, Takagi T, Aburaya S, Watanabe S, Aoki W, Ueda M. Ruegeria sp. Strains Isolated from the Reef-Building Coral Galaxea fascicularis Inhibit Growth of the Temperature-Dependent Pathogen Vibrio coralliilyticus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:1-8. [PMID: 30194504 DOI: 10.1007/s10126-018-9853-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
The coral microbiome has attracted increased attention because of its potential roles in host protection against deadly diseases. However, little is known about the role of coral-associated bacteria against the temperature-dependent opportunistic pathogen Vibrio coralliilyticus. In this study, we tested whether bacteria associated with the reef-building coral Galaxea fascicularis could inhibit the growth of V. coralliilyticus. Twenty-nine cultivable bacteria were successfully isolated from a healthy colony of G. fascicularis kept in an aquarium. Among the bacterial isolates, three Ruegeria sp. strains inhibited the growth of V. coralliilyticus P1 as a reference strain and Vibrio sp. isolated in this study. Ruegeria sp. strains were also detected from other G. fascicularis colonies in the aquarium and in previous field studies by 16S rRNA amplicon sequencing, suggesting that Ruegeria sp. strains are common among G. fascicularis colonies. These results illuminate the potential role of Ruegeria sp. in protecting corals against pathogenic Vibrio species.
Collapse
Affiliation(s)
- Natsuko Miura
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan.
| | - Keisuke Motone
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Toshiyuki Takagi
- Japan Society for the Promotion of Science, Tokyo, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
| | - Shunsuke Aburaya
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Sho Watanabe
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Wataru Aoki
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Mitsuyoshi Ueda
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
19
|
Mera H, Bourne DG. Disentangling causation: complex roles of coral-associated microorganisms in disease. Environ Microbiol 2017; 20:431-449. [DOI: 10.1111/1462-2920.13958] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hanaka Mera
- College of Science and Engineering; James Cook University; Townsville Queensland 4811, Australia
| | - David G. Bourne
- College of Science and Engineering; James Cook University; Townsville Queensland 4811, Australia
- Australian Institute of Marine Science; PMB 3, Townsville, Queensland 4810 Australia
| |
Collapse
|
20
|
Distinguishing between Microbial Habitats Unravels Ecological Complexity in Coral Microbiomes. mSystems 2016; 1:mSystems00143-16. [PMID: 27822559 PMCID: PMC5080407 DOI: 10.1128/msystems.00143-16] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 01/07/2023] Open
Abstract
The diverse prokaryotic communities associated with reef-building corals may provide important ecological advantages to their threatened hosts. The consistency of relationships between corals and specific prokaryotes, however, is debated, and the locations where microbially mediated processes occur in the host are not resolved. Here, we examined how the prokaryotic associates of five common Caribbean corals with different evolutionary and ecological traits differ across mucus and tissue habitats. We used physical and chemical separation of coral mucus and tissue and sequencing of partial small-subunit rRNA genes of bacteria and archaea from these samples to demonstrate that coral tissue and mucus harbor unique reservoirs of prokaryotes, with 23 to 49% and 31 to 56% of sequences exclusive to the tissue and mucus habitats, respectively. Across all coral species, we found that 46 tissue- and 22 mucus-specific microbial members consistently associated with the different habitats. Sequences classifying as "Candidatus Amoebophilus," Bacteroidetes-affiliated intracellular symbionts of amoebae, emerged as previously unrecognized tissue associates of three coral species. This study demonstrates how coral habitat differentiation enables highly resolved examination of ecological interactions between corals and their associated microorganisms and identifies previously unrecognized tissue and mucus associates of Caribbean corals for future targeted study. IMPORTANCE This study demonstrates that coral tissue or mucus habitats structure the microbiome of corals and that separation of these habitats facilitates identification of consistent microbial associates. Using this approach, we demonstrated that sequences related to "Candidatus Amoebophilus," recognized intracellular symbionts of amoebae, were highly associated with the tissues of Caribbean corals and possibly endosymbionts of a protistan host within corals, adding a further degree of intricacy to coral holobiont symbioses. Examining specific habitats within complex hosts such as corals is useful for targeting important microbial associations that may otherwise be masked by the sheer microbial diversity associated with all host habitats.
Collapse
|