1
|
Sharma B, Shukla S, Rattan R, Fatima M, Goel M, Bhat M, Dutta S, Ranjan RK, Sharma M. Antimicrobial Agents Based on Metal Complexes: Present Situation and Future Prospects. Int J Biomater 2022; 2022:6819080. [PMID: 36531969 PMCID: PMC9754840 DOI: 10.1155/2022/6819080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 08/27/2023] Open
Abstract
The rise in antimicrobial resistance is a cause of serious concern since the ages. Therefore, a dire need to explore new antimicrobial entities that can combat against the increasing threat of antibiotic resistance is realized. Studies have shown that the activity of the strongest antibiotics has reduced drastically against many microbes such as microfungi and bacteria (Gram-positive and Gram-negative). A ray of hope, however, was witnessed in early 1940s with the development of new drug discovery and use of metal complexes as antibiotics. Many new metal-based drugs were developed from the metal complexes which are potentially active against a number of ailments such as cancer, malaria, and neurodegenerative diseases. Therefore, this review is an attempt to describe the present scenario and future development of metal complexes as antibiotics against wide array of microbes.
Collapse
Affiliation(s)
- Bharti Sharma
- School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir 185234, India
| | - Sudeep Shukla
- Environment Pollution Analysis Lab, Bhiwadi, Alwar, Rajasthan 301019, India
| | - Rohit Rattan
- WWF-India Field Office, ITI Road, Rajouri, Jammu and Kashmir 185132, India
| | - Musarrat Fatima
- Department of Botany, BGSB University, Rajouri, Jammu and Kashmir 185234, India
| | - Mayurika Goel
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Program, The Energy and Resource Institute, Gurugram, Haryana, India
| | - Mamta Bhat
- School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir 185234, India
| | - Shruti Dutta
- Amity School of Earth and Environmental Sciences, Amity University Haryana, Haryana, India
| | | | - Mamta Sharma
- Aditi Mahavidyalaya, University of Delhi, New Delhi, India
| |
Collapse
|
2
|
Margetić A, Nikolić S, Grgurić-Šipka S, Vujčić MT. Interaction of organoruthenium(II)-polypyridyl complexes with DNA and BSA. Biometals 2022; 35:813-829. [PMID: 35708875 DOI: 10.1007/s10534-022-00404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
Abstract
The interaction of four arene ruthenium complexes [(η6-p-cymene)Ru(Me2dppz)Cl]PF6 (1) with Me2dppz = 11,12-dimethyldipyrido[3,2-a:2',3'-c]phenazine, [(η6-p-cymene)Ru(aip)Cl]PF6 (2) with aip = 2-(9-anthryl)-1H-imidazo[4,5-f][1,10] phenanthroline), ([(ƞ6-toluene)Ru(ppf)Cl]PF6) (3) and ([(ƞ6-p-cymene)Ru(ppf)Cl]PF6) (4) with ppf = pyrido[2',3':5,6] pyrazino[2,3-f][1,10]phenanthroline with calf thymus DNA were investigated. All of four complexes exhibit DNA-binding activity. UV-Vis spectroscopic studies revealed the intrinsic binding constants of the order 104 M-1 of magnitude, indicating non-intercalative mode. Fluorescence quenching analysis showed that all complexes interfere with intercalator ethidium bromide and minor groove binder Hoechst 33258 by a singular non-intercalative mode with extent that differs by two orders of magnitude. Gel electrophoresis results on DNA cleavage assay demonstrated that all complexes produced conformational changes of supercoiled circular plasmid pUC19 in concentration dependent way. The results of fluorescence titration bovine serum albumin by 1, 2, 3 and 4 showed that all complexes significantly quench tryptophan residues fluorescence through a static quenching mechanism. The antimicrobial activity against both Gram-positive and Gram-negative bacteria analyzed. Complex 1 was most active, even on Escherichia coli was more active than positive control compound.
Collapse
Affiliation(s)
- Aleksandra Margetić
- Department of Chemistry, University of Belgrade - Institute of Chemistry, Technology and Metallurgy - National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia
| | - Stefan Nikolić
- Innovative Centre Faculty of Chemistry Belgrade, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Sanja Grgurić-Šipka
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia.
| | - Miroslava T Vujčić
- Department of Chemistry, University of Belgrade - Institute of Chemistry, Technology and Metallurgy - National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia
| |
Collapse
|
3
|
|
4
|
Munteanu AC, Uivarosi V. Ruthenium Complexes in the Fight against Pathogenic Microorganisms. An Extensive Review. Pharmaceutics 2021; 13:874. [PMID: 34199283 PMCID: PMC8232020 DOI: 10.3390/pharmaceutics13060874] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
The widespread use of antibiotics has resulted in the emergence of drug-resistant populations of microorganisms. Clearly, one can see the need to develop new, more effective, antimicrobial agents that go beyond the explored 'chemical space'. In this regard, their unique modes of action (e.g., reactive oxygen species (ROS) generation, redox activation, ligand exchange, depletion of substrates involved in vital cellular processes) render metal complexes as promising drug candidates. Several Ru (II/III) complexes have been included in, or are currently undergoing, clinical trials as anticancer agents. Based on the in-depth knowledge of their chemical properties and biological behavior, the interest in developing new ruthenium compounds as antibiotic, antifungal, antiparasitic, or antiviral drugs has risen. This review will discuss the advantages and disadvantages of Ru (II/III) frameworks as antimicrobial agents. Some aspects regarding the relationship between their chemical structure and mechanism of action, cellular localization, and/or metabolism of the ruthenium complexes in bacterial and eukaryotic cells are discussed as well. Regarding the antiviral activity, in light of current events related to the Covid-19 pandemic, the Ru (II/III) compounds used against SARS-CoV-2 (e.g., BOLD-100) are also reviewed herein.
Collapse
Affiliation(s)
- Alexandra-Cristina Munteanu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Valentina Uivarosi
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
5
|
Recent Studies on the Antimicrobial Activity of Transition Metal Complexes of Groups 6–12. CHEMISTRY-SWITZERLAND 2020. [DOI: 10.3390/chemistry2020026] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antimicrobial resistance is an increasingly serious threat to global public health that requires innovative solutions to counteract new resistance mechanisms emerging and spreading globally in infectious pathogens. Classic organic antibiotics are rapidly exhausting the structural variations available for an effective antimicrobial drug and new compounds emerging from the industrial pharmaceutical pipeline will likely have a short-term and limited impact before the pathogens can adapt. Inorganic and organometallic complexes offer the opportunity to discover and develop new active antimicrobial agents by exploiting their wide range of three-dimensional geometries and virtually infinite design possibilities that can affect their substitution kinetics, charge, lipophilicity, biological targets and modes of action. This review describes recent studies on the antimicrobial activity of transition metal complexes of groups 6–12. It focuses on the effectiveness of the metal complexes in relation to the rich structural chemical variations of the same. The aim is to provide a short vade mecum for the readers interested in the subject that can complement other reviews.
Collapse
|
6
|
Wang Q, Fu C, Zhao Z, Fu A. Targeted Theranostic of Cryptococcal Encephalitis by a Novel Polypyridyl Ruthenium Complex. Mol Pharm 2019; 17:145-154. [PMID: 31800255 DOI: 10.1021/acs.molpharmaceut.9b00848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cryptococcus neoformans (C. neoformans) is one of the most well-known zoonotic fungal pathogens. Cryptococcal encephalitis remains a major cause of morbidity and mortality in immunocompromised hosts. Effective and targeting killing of C. neoformans in the brain is an essential approach to prevent and treat cryptococcal encephalitis. In this study, a fluorescent polypyridyl ruthenium complex RC-7, {[phen2Ru(bpy-dinonyl)](PF6)2 (phen = 1,10-phenanthroline, bpy-dinonyl = 4,4'-dinonyl-2,2'-bipyridine)}, was screened out, which showed a highly fungicidal effect on C. neoformans. The values of minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) in antifungal activities were significantly lower than fluconazole as the control. Moreover, RC-7 was prepared as a brain-targeting nanoliposome (RDP-liposome; RDP is a peptide derived from rabies virus glycoprotein) for in vivo application. The results revealed that the liposomes could accumulate in the encephalitis brain and play an antifungal role. Compared with the cryptococcal encephalitis model mice, the RDP-liposomes remarkably prolonged the survival days of the encephalitis-bearing mice from 10 days to 24 days. Here, we introduce a polypyridyl ruthenium complex that could be used as a novel antifungal agent, and this study may have a broad impact on the development of targeted delivery based on ruthenium complex-loaded liposomes for theranostics of cryptococcal encephalitis.
Collapse
Affiliation(s)
- Qinghua Wang
- College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , China.,College of Animal Science , Southwest University , Chongqing 402460 , China
| | - Chen Fu
- College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , China
| | - Zizhen Zhao
- College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , China
| | - Ailing Fu
- College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , China
| |
Collapse
|
7
|
Synthesis, characterization and antitumor activity of two new dipyridinium ylide based lanthanide(III) complexes. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Yang Y, Liao G, Fu C. Recent Advances on Octahedral Polypyridyl Ruthenium(II) Complexes as Antimicrobial Agents. Polymers (Basel) 2018; 10:polym10060650. [PMID: 30966684 PMCID: PMC6404027 DOI: 10.3390/polym10060650] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/15/2018] [Accepted: 06/07/2018] [Indexed: 01/25/2023] Open
Abstract
Recent developments of therapeutic agents based on transition metals have attracted a great deal of attention. Metal drugs have advantages over other small molecule drugs, and it was demonstrated that, in a number of studies, they played an important role in pharmaceutical chemical research and clinical chemotherapy of cancers. It is worthwhile mentioning that octahedral polypyridyl ruthenium(II) complexes have shown remarkable applications in chemical biology and medicinal chemistry over the last decade. However, only very recently has there been comprehensive interest in their antimicrobial properties due to metal-related toxic concerns or neglected potential roles in microbiological systems. Our review will highlight the recent developments in octahedral polypyridyl ruthenium(III) complexes that have exhibited significant antimicrobial activities and will discuss the relationship between the chemical structure and biological process of ruthenium complexes, in both bacterial and fungal cells.
Collapse
Affiliation(s)
- Yulin Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Guojian Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Chen Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
The Discovery of an Iridium(III) Dimer Complex as a Potent Antibacterial Agent against Non-Replicating Mycobacterium smegmatis. Polymers (Basel) 2018; 10:polym10030297. [PMID: 30966332 PMCID: PMC6414957 DOI: 10.3390/polym10030297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/04/2018] [Accepted: 03/06/2018] [Indexed: 12/21/2022] Open
Abstract
Novel agents are urgently needed to rapidly kill drug-resistant Mycobacterium tuberculosis. Noble metal complexes, particularly polypyridyl iridium complexes serving as therapeutic agents, have attracted considerable interest recently, due to their significant cytotoxic or antimicrobial activities. Here, we reported an polypyridyl iridium dimer complex [Ir(ppy)2Cl]2 (3), with ppy = phenylpyridine, which was found to be active against both exponential growing and non-replicating M. smegmatis, with minimum inhibitory concentration values of 2 μg/mL, and exhibited rapid bactericidal kinetics, killing pathogens within 30–60 min. Moreover, 3 was demonstrated to generate a large amount of reactive oxygen species and to be effective in drug-resistant strains. Taken together, the selectively active iridium(III) dimer complex showed promise for use as a novel drug candidate for the treatment of M. tuberculosis infection.
Collapse
|