1
|
Ghanbari H, Ghanbari R, Delazar A, Ebrahimi SN, Memar MY, Moghadam SB, Hamedeyazdan S, Nazemiyeh H. Caccinia macranthera Brand var. macranthera: Phytochemical analysis, phytotoxicity and antimicrobial investigations of essential oils with concomitant in silico molecular docking based on OPLS force-field. Toxicon 2023; 234:107291. [PMID: 37734456 DOI: 10.1016/j.toxicon.2023.107291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
This study was conducted to extract the essential oils (EOs) of Caccinia macranthera identify their phytochemicals, evaluate their phytotoxicity, antimicrobial activity and enzyme inhibition effects using in silico molecular docking technique. EOs of aerial parts, seeds, and roots of C. macranthera were extracted and analyzed via Gas chromatography-Mass Spectrometry. The antibacterial activity of EOs were determined on nine microorganisms via disk diffusion and microbroth dilution assays. In addition, the allelopathic properties of EOs were investigated by calculating the IC50s for inhibition of germination, seedling length and seedling weight growth of Cuscuta campestris seeds. In order to assess the possible inhibitory effect of major components of C. macranthera EOs on enzymes inhibiting germination and plant growth, molecular docking was employed against the glutamine synthetase (GS), acetohydroxyacid synthetase (AHAS), and 4-hydroxyphenyl pyruvate dioxygenase (HPPD) enzymes. The main compounds of EOs from aerial parts, seeds, and roots EOs were dihydrocarveol (29.5%), Trimethyl-2-Pentadecanone (13.6%), and Palmitic acid (16.8%), respectively. The maximum antibacterial effect was related to the aerial parts EO against Staphylococcus epidermidis. Phytotoxicity analysis exhibited a concentration-dependent increase (p ≤ 0.05) activity. The aerial parts EO demonstrated a substantial allelopathy effect, with IC50 values of 0.22 ± 0.026, 0.39 ± 0.021, and 0.20 ± 0.025 mg/mL, respectively, on inhibitory germination, seedling length and seedling weight growth of Cuscuta campestris seeds. Molecular docking analyzes showed that Oleic acid was suitable for dynamic stabilization of HPPD (-6.552 kJ/mol) and GS (-7.265 kJ/mol) and Eupatoriochromene had the inhibitory potential against AHAS, with docking score of -4.189 kJ/mol. The current research demonstrated that C. macranthera EOs from its aerial parts have an acceptable phytotoxic activity against Cuscuta campestris weed. The major components of EOs, Oleic acid and Eupatoriochromene, presented the strongest binding with HPPD, GS, and AHAS active sites causing disturbance in germination, photosynthesis and weed growth suggesting it as a natural herbicide for controlling the weeds.
Collapse
Affiliation(s)
- Hadi Ghanbari
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghanbari
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - Abbas Delazar
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sanaz Hamedeyazdan
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hossein Nazemiyeh
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Bi Y, Xing Y, Gui C, Tian Y, Zhang M, Yao Y, Hu G, Han L, He F, Zhang Y. Potential Involvement of Organic Anion Transporters in Drug Interactions with Shuganning Injection, a Traditional Chinese Patent Medicine. PLANTA MEDICA 2023; 89:940-951. [PMID: 37236232 DOI: 10.1055/a-2085-2367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Traditional Chinese medicine injections have been widely used in China for the treatment of various diseases. Transporter-mediated drug-drug interactions are a major contributor to adverse drug reactions. However, the research on transporter-mediated Traditional Chinese medicine injection-drug interactions is limited. Shuganning injection is a widely used Traditional Chinese medicine injection for treating various liver diseases. In this study, we investigated the inhibitory effect of Shuganning injection and its four main ingredients (baicalin, geniposide, chlorogenic acid, and oroxylin A) on 9 drug transporters. Shuganning injection strongly inhibited organic anion transporter 1 and organic anion transporter 3 with IC50 values < 0.1% (v/v), and moderately inhibited organic anion transporter 2, organic anion transporting-polypeptide 1B1, and organic anion transporting-polypeptide 1B3 with IC50 values < 1.0%. Baicalin, the most abundant bioactive ingredient in the Shuganning injection, was identified as both an inhibitor and substrate of organic anion transporter 1, organic anion transporter 3, and organic anion transporting-polypeptide 1B3. Oroxylin A had the potential to act as both an inhibitor and substrate of organic anion transporting-polypeptide 1B1 and organic anion transporting-polypeptide 1B3. In contrast, geniposide and chlorogenic acid had no significant inhibitory effect on drug transporters. Notably, Shuganning injection markedly altered the pharmacokinetics of furosemide and atorvastatin in rats. Using Shuganning injection as an example, our findings support the implementation of transporter-mediated Traditional Chinese medicine injection-drug interactions in the development of Traditional Chinese medicine injection standards.
Collapse
Affiliation(s)
- Yajuan Bi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Yanchao Xing
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Chunshan Gui
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Yiqing Tian
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Mingzhe Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Yao Yao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Ge Hu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Feng He
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
3
|
Chen Y, Li H, Wang K, Wang Y. Recent Advances in Synthetic Drugs and Natural Actives Interacting with OAT3. Molecules 2023; 28:4740. [PMID: 37375294 DOI: 10.3390/molecules28124740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/03/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Organic anion transporter 3 (OAT3) is predominantly expressed in the kidney and plays a vital role in drug clearance. Consequently, co-ingestion of two OAT3 substrates may alter the pharmacokinetics of the substrate. This review summarizes drug-drug interactions (DDIs) and herbal-drug interactions (HDIs) mediated by OAT3, and inhibitors of OAT3 in natural active compounds in the past decade. This provides a valuable reference for the combined use of substrate drugs/herbs for OAT3 in clinical practice in the future and for the screening of OAT3 inhibitors to avoid harmful interactions.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
| | - Hongyan Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
| | - Ke Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
| | - Yousheng Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
| |
Collapse
|
4
|
Bi Y, Wang X, Ding H, He F, Han L, Zhang Y. Transporter-mediated Natural Product-Drug Interactions. PLANTA MEDICA 2023; 89:119-133. [PMID: 35304735 DOI: 10.1055/a-1803-1744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increasing use of natural products in clinical practice has raised great concerns about the potential natural product-drug interactions (NDIs). Drug transporters mediate the transmembrane passage of a broad range of drugs, and thus are important determinants for drug pharmacokinetics and pharmacodynamics. Generally, transporters can be divided into ATP binding cassette (ABC) family and solute carrier (SLC) family. Numerous natural products have been identified as inhibitors, substrates, inducers, and/or activators of drug transporters. This review article aims to provide a comprehensive summary of the recent progress on the research of NDIs, focusing on the main drug transporters, such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), organic anion transporter 1 and 3 (OAT1/OAT3), organic anion-transporting polypeptide 1B1 and 1B3 (OATP1B1/OATP1B3), organic cation transporter 2 (OCT2), multidrug and toxin extrusion protein 1 and 2-K (MATE1/MATE2-K). Additionally, the challenges and strategies of studying NDIs are also discussed.
Collapse
Affiliation(s)
- Yajuan Bi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Xue Wang
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, USA
| | - Hui Ding
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Feng He
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
5
|
Hou J, Zhong L, Liu J, Liu F, Xia C. Interaction of the main active components in Shengmai formula mediated by organic anion transporter 1 (OAT1). JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115515. [PMID: 35777609 DOI: 10.1016/j.jep.2022.115515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shengmai formula (SMF) is a classical traditional Chinese medicine prescription, which is widely used in the treatment of cardiovascular and cerebrovascular diseases. Our previous studies have demonstrated that some components in SMF can interact with each other through breast cancer resistance protein, sodium taurocholate co-transporting polypeptide, organic anion transporting polypeptide 1B1 and 1B3. Organic anion transporter 1 (OAT1) is highly expressed in kidney, mediating the elimination of many endogenous and exogenous substances. However, the interaction between the main active components in SMF and OAT1 is not clear. AIM OF THE STUDY This study aimed to investigate the interactions of the major bioactive components in SMF mediated by OAT1. MATERIALS AND METHODS Four main fractions, namely, ginseng total saponins (GTS), ophiopogon total saponins (OTS), ophiopogon total flavonoids (OTF), fructus schisandrae total lignans (STL), and 12 active components, namely, ginsenoside Rg1, Re, Rd and Rb1, ophiopogonin D and D', methylophiopogonanone A and B, schizandrol A and B, schizandrin A and B, were selected to explore the interactions of SMF with OAT1 using cell and rat models. RESULTS The above four main fractions in SMF all exhibited inhibitory effects on the uptake of 6-carboxyfluorescein (6-CF), a classic substrate of OAT1. Among the 12 main effective components, only ginsenoside Re, Rd, and methylophiopogonanone A showed inhibition of 6-CF uptake. Additionally, we found that schizandrin B was transported by HEK293-OAT1 cells, and schizandrin B uptake was markedly inhibited by GTS, OTS, OTF, ginsenoside Re, Rd, and methylophiopogonanone A. In rats, ginsenoside Re, Rd, and methylophiopogonanone A jointly increased the AUC(0-t), AUC(0-∞), and Cmax of schizandrin B, but they decreased its clearance in plasma and excretion in urine. CONCLUSIONS Ginsenoside Re, Rd, and methylophiopogonanone A were the potential inhibitors of OAT1, and may interact with some drugs serving as OAT1 substrates clinically. Schizandrin B was a potential OAT1 substrate, and its OAT1-mediated transport was inhibited by ginsenoside Re, Rd, and methylophiopogonanone A. OAT1-mediated interactions of the main active components in SMF can be regarded as one of the important compatibility mechanisms of traditional Chinese medicine preparations.
Collapse
Affiliation(s)
- Jinxia Hou
- Clinical Pharmacology Institute, Nanchang University, Nanchang, 330031, PR China; Pharmacy Department, Jiangxi Provincial People's Hospital, Nanchang, 330006, PR China
| | - Lanping Zhong
- Clinical Pharmacology Institute, Nanchang University, Nanchang, 330031, PR China
| | - Jianming Liu
- Clinical Pharmacology Institute, Nanchang University, Nanchang, 330031, PR China
| | - Fanglan Liu
- Clinical Pharmacology Institute, Nanchang University, Nanchang, 330031, PR China
| | - Chunhua Xia
- Clinical Pharmacology Institute, Nanchang University, Nanchang, 330031, PR China.
| |
Collapse
|
6
|
Leite PM, Martins MAP, Carvalho MDG, Castilho RO. Mechanisms and interactions in concomitant use of herbs and warfarin therapy: An updated review. Biomed Pharmacother 2021; 143:112103. [PMID: 34474338 DOI: 10.1016/j.biopha.2021.112103] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022] Open
Abstract
This review is an updated and expanded version published in this journal in 2016. Warfarin pharmacotherapy is extremely complex, since in addition to being a low therapeutic index drug, it does not follow the dose-response pattern and has characteristics that predispose the occurrence of interactions, such as high binding rate to plasma proteins, metabolization by cytochrome P450 enzymes, further to acting in the complex process of blood coagulation, platelet activation, and inflammation. For these reasons, warfarin has great potential for interaction with drugs, foods, and herbal medicines. Herb-warfarin interactions, however, are still not very well studied; thus, the objective of this update is to present new information on the subject aiming to provide a scientific basis to help health professionals in the clinical management of these interactions. A literature review was performed from May to June 2021 in multiple databases and articles published in 2016 to 2021 were included. A total of 59 articles describing 114 herbal medicines were reported to interact with warfarin. Of the plants mentioned, 84% had the potential to increase warfarin effect and the risk of bleeding. Targets possibly involved in these interactions include the processes of blood coagulation, platelet activation, and inflammation, in addition to the pharmacokinetics and pharmacodynamics of warfarin. Despite these alarming numbers, however, the clinical management of interactions is known to be effective. Thus, it is important that the use of these herbal medicines be done with caution in anticoagulated patients and that studies of herb-drug interactions be encouraged in order to generate information to support the clinical management of patients.
Collapse
Affiliation(s)
- Paula Mendonça Leite
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil.
| | - Maria Auxiliadora Parreiras Martins
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil
| | - Maria das Graças Carvalho
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil
| | - Rachel Oliveira Castilho
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil; Consórcio Acadêmico Brasileiro de Saúde Integrativa, CABSIN, Brazil.
| |
Collapse
|
7
|
Granados JC, Richelle A, Gutierrez JM, Zhang P, Zhang X, Bhatnagar V, Lewis NE, Nigam SK. Coordinate regulation of systemic and kidney tryptophan metabolism by the drug transporters OAT1 and OAT3. J Biol Chem 2021; 296:100575. [PMID: 33757768 PMCID: PMC8102410 DOI: 10.1016/j.jbc.2021.100575] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
How organs sense circulating metabolites is a key question. Here, we show that the multispecific organic anion transporters of drugs, OAT1 (SLC22A6 or NKT) and OAT3 (SLC22A8), play a role in organ sensing. Metabolomics analyses of the serum of Oat1 and Oat3 knockout mice revealed changes in tryptophan derivatives involved in metabolism and signaling. Several of these metabolites are derived from the gut microbiome and are implicated as uremic toxins in chronic kidney disease. Direct interaction with the transporters was supported with cell-based transport assays. To assess the impact of the loss of OAT1 or OAT3 function on the kidney, an organ where these uptake transporters are highly expressed, knockout transcriptomic data were mapped onto a “metabolic task”-based computational model that evaluates over 150 cellular functions. Despite the changes of tryptophan metabolites in both knockouts, only in the Oat1 knockout were multiple tryptophan-related cellular functions increased. Thus, deprived of the ability to take up kynurenine, kynurenate, anthranilate, and N-formylanthranilate through OAT1, the kidney responds by activating its own tryptophan-related biosynthetic pathways. The results support the Remote Sensing and Signaling Theory, which describes how “drug” transporters help optimize levels of metabolites and signaling molecules by facilitating organ cross talk. Since OAT1 and OAT3 are inhibited by many drugs, the data implies potential for drug–metabolite interactions. Indeed, treatment of humans with probenecid, an OAT-inhibitor used to treat gout, elevated circulating tryptophan metabolites. Furthermore, given that regulatory agencies have recommended drugs be tested for OAT1 and OAT3 binding or transport, it follows that these metabolites can be used as endogenous biomarkers to determine if drug candidates interact with OAT1 and/or OAT3.
Collapse
Affiliation(s)
- Jeffry C Granados
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Anne Richelle
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Jahir M Gutierrez
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Patrick Zhang
- Department of Biology, University of California San Diego, La Jolla, California, USA
| | - Xinlian Zhang
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California, USA
| | - Vibha Bhatnagar
- Department of Family and Preventative Medicine, University of California San Diego, La Jolla, California, USA
| | - Nathan E Lewis
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA; Department of Pediatrics, University of California San Diego, La Jolla, California, USA; Novo Nordisk Foundation Center for Biosustainability at UC San Diego, University of California San Diego, La Jolla, California, USA
| | - Sanjay K Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA; Department of Medicine, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
8
|
Ma R, Li G, Wang X, Bi Y, Zhang Y. Inhibitory effect of sixteen pharmaceutical excipients on six major organic cation and anion uptake transporters. Xenobiotica 2020; 51:95-104. [PMID: 32544367 DOI: 10.1080/00498254.2020.1783720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To date, relatively little is known about the interactions of pharmaceutical excipients with hepatic and renal drug uptake transporters. The present study was designed to systematically evaluate the effects of 16 commonly consumed excipients on human organic cation transporter 1 and 2 (hOCT1 and hOCT2), human organic anion transporter 1 and 3 (hOAT1 and hOAT3) and human organic anion transporting polypeptide 1B1 and 1B3 (hOATP1B1 and hOATP1B3). The inhibitory effects and mechanisms of excipients on transporters were investigated using in vitro uptake studies, cell viability assays, concentration-dependent studies, and the Lineweaver-Burk plot method. Triton X-100 is a non-competitive inhibitor for all six transporters. Tween 20 inhibits hOCT2, hOAT1, hOAT3, and hOATP1B3 in a mixed way, whereas it competitively inhibits hOATP1B1. The inhibition of Tween 80 is competitive for hOCT2, non-competitive for hOATP1B1 and hOATP1B3, and mixed for hOAT1 and hOAT3. Concentration-dependent studies identify Triton X-100 as a strong inhibitor of hOCT1 and hOCT2 with IC50 values of 20.1 and 4.54 μg/mL, respectively. Additionally, Triton X-100, Tween 20, and Tween 80 strongly inhibit hOAT3 with IC50 values ≤31.0 μg/mL. The present study is significant in understanding the excipient-drug interactions and provides valuable information for excipient selection in drug development.
Collapse
Affiliation(s)
- Ruicong Ma
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Gentao Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xue Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yajuan Bi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
9
|
Unusual Flavones from Primula macrocalyx as Inhibitors of OAT1 and OAT3 and as Antifungal Agents against Candida rugosa. Sci Rep 2019; 9:9230. [PMID: 31239507 PMCID: PMC6592895 DOI: 10.1038/s41598-019-45728-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/13/2019] [Indexed: 11/08/2022] Open
Abstract
A bioactivity guided program exploring the interaction of phytochemicals in the entire plant Primula macrocalyx with the organic anion transporters (OAT1 and OAT3) and microorganisms led to the elucidation of ten known flavones (1–4, 6–10, 12) and two previously undescribed flavones (5, 11). The structures of the compounds were determined by extensive analysis of spectroscopic data, as well as by comparison with data from previous reports. Two known flavones (9, 12) are reported for the first time from the family Primulaceae. All compounds were evaluated for inhibition of OAT1 and OAT3. Six flavones (2, 3, 6–8, 12) showed potent inhibitory activity on OAT1, while seven flavones (2, 3, 6–9, 12) showed marked inhibitory activity on OAT3, with IC50 ≤ 10.0 µM. Antimicrobial activities of crude fractions against sixteen microorganisms were tested to give a target yeast strain Candida rugosa for further evaluation of MICs on the isolates. Three flavones (7, 8, 12) showed marked antifungal activity with MIC < 2.0 µM. To our knowledge, this study is the first to evaluate these flavones as inhibitors of the OAT1 and OAT3, and as antifungal agents.
Collapse
|
10
|
Li X, Qiao Y, Wang X, Ma R, Li T, Zhang Y, Borris RP. Dihydrophenanthrenes from Juncus effusus as Inhibitors of OAT1 and OAT3. JOURNAL OF NATURAL PRODUCTS 2019; 82:832-839. [PMID: 30892891 DOI: 10.1021/acs.jnatprod.8b00888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Organic anion transporters 1 (OAT1) and 3 (OAT3) play important roles in the renal elimination of a range of substrate molecules. Little is known about natural products that can modulate OAT1 and OAT3 activities. The medullae of Juncus effusus is often used for the treatment of dysuria in traditional Chinese medicine. To study the interactions of phytochemicals in J. effusus with human OAT1 and OAT3, a bioactivity guided phytochemical investigation led to seven new phenanthrenoids along with nine known compounds, including eight phenanthrenoids and a benzophenone from the dichloromethane soluble fraction of a methanol extract of the medullae of J. effusus. The structures were established by physical data analysis, including high-resolution electrospray ionization mass spectrometry and 1D and 2D NMR. The compounds were evaluated for inhibition of OAT1 and OAT3 in vitro. Compounds 10 and 16 were inhibitors for OAT1, and compounds 1-3, 10, and 16 were inhibitors for OAT3 with IC50 values less than 5.0 μM. Dihydrophenanthrene 1 markedly altered the pharmacokinetic parameters of the diuretic drug furosemide, a known substrate of both OAT1 and OAT3, in vivo.
Collapse
Affiliation(s)
- Xue Li
- School of Pharmaceutical Science and Technology, Health Sciences Platform , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , People's Republic of China
| | - Yilin Qiao
- School of Pharmaceutical Science and Technology, Health Sciences Platform , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , People's Republic of China
| | - Xue Wang
- School of Pharmaceutical Science and Technology, Health Sciences Platform , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , People's Republic of China
| | - Ruicong Ma
- School of Pharmaceutical Science and Technology, Health Sciences Platform , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , People's Republic of China
| | - Tianxiang Li
- Tianjin University of Traditional Chinese Medicine , 88 Yuquan Road , Nankai District, Tianjin 300193 , People's Republic of China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Health Sciences Platform , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , People's Republic of China
| | - Robert P Borris
- School of Pharmaceutical Science and Technology, Health Sciences Platform , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , People's Republic of China
| |
Collapse
|
11
|
Qiao Y, Liu X, Li X, Wang X, Li C, Khutsishvili M, Alizade V, Atha D, Zhang Y, Borris RP. Biflavonoids from Juniperus oblonga inhibit organic anion transporter 3. Biochem Biophys Res Commun 2019; 509:931-936. [PMID: 30648554 DOI: 10.1016/j.bbrc.2019.01.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/08/2019] [Indexed: 01/04/2023]
Abstract
Organic anion transporters (OATs in humans, Oats in rodents) play an important role in the distribution and excretion of numerous endogenous metabolic products and exogenous organic anions, including a host of widely prescribed drugs. Their ligand recognition is also important for drug therapy and development. In this study, the n-butanol and dichloromethane soluble fractions of Juniperus oblonga were found to inhibit OAT3 in vitro and three biflavonoids were found to be responsible for this activity. One of these compounds, amentoflavone exhibited stronger inhibition than probenecid, a known strong inhibitor of OAT3. Biological characterization of amentoflavone in vivo also showed inhibition of Oat3. Preliminary observations of structure-activity relationships suggest that the biflavonoids are more potent inhibitors of this transporter than their corresponding monomer, and that methylation of even a single hydroxyl group results in a substantial decrease in activity. This greater potency of the biflavonoids may indicate the need for a more in-depth investigation of the distribution of biflavonoids in plants used as foodstuffs and herbal medicines, due to their potential for causing interactions with OAT3 substrate drugs.
Collapse
Affiliation(s)
- Yilin Qiao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 30072, China
| | - Xueling Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 30072, China
| | - Xue Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 30072, China
| | - Xue Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 30072, China
| | - Caiyu Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 30072, China
| | - Manana Khutsishvili
- National Herbarium of Georgia, Ilia State University, Tbilisi, 100995, Georgia
| | - Valida Alizade
- Institute of Botany, Azerbaijan National Academy of Sciences, Baku, AZ, 1102, Azerbaijan
| | - Daniel Atha
- New York Botanical Garden, Bronx, 10041, NY, USA
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 30072, China
| | - Robert P Borris
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 30072, China.
| |
Collapse
|
12
|
Wang X, Han L, Li G, Peng W, Gao X, Klaassen CD, Fan G, Zhang Y. From the Cover: Identification of Natural Products as Inhibitors of Human Organic Anion Transporters (OAT1 and OAT3) and Their Protective Effect on Mercury-Induced Toxicity. Toxicol Sci 2019; 161:321-334. [PMID: 29045746 DOI: 10.1093/toxsci/kfx216] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mercury accumulates in kidneys and produces acute kidney injury. Semen cassiae (SC), a widely consumed tea and herbal medicine in Eastern Asia, has been reported to have protective effects on kidneys. In this study, SC extract was shown to almost abolish the histological alterations induced by mercuric chloride in rat kidneys. A total of 22 compounds were isolated from SC, and 1,7,8-methoxyl-2-hydroxyl-3-methyl-anthraquinone was detected in SC for the first time. Among the eight compounds identified in the blood of rats after SC treatment, six were strong inhibitors of human organic anion transporter 1 and 3 (OAT1 and OAT3). Inhibitory studies revealed that OAT1 and OAT3 were inhibited by SC constituents, in both a competitive and noncompetitive manner. Both OAT1- and OAT3-overexpressing cells were susceptible to the cytotoxicity of the cysteine-mercury conjugate, but only OAT1-overexpressing cells could be protected by 200 μM probenecid or 10 μM of the eight inhibitors in SC, suggesting that OAT1 is the major determinant in the cellular uptake of mercury. To facilitate the identification of inhibitors of OAT1 and OAT3, models of OAT1 and OAT3 were constructed using recently determined protein templates. By combining in silico and in vitro methods, inhibitors of OAT1 and OAT3 were predicted and validated from SC constituents. Collectively, the present study suggests that additional inhibitors of OAT1 and OAT3 can be predicted and validated from natural products by combining docking and in vitro screening, and could be a source of pharmaceutical compounds for developing treatments for mercury-induced kidney injury.
Collapse
Affiliation(s)
- Xue Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Gentao Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wei Peng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Curtis D Klaassen
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Guanwei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
13
|
Lu YY, Du ZY, Li Y, Wang JL, Zhao MB, Jiang Y, Guo XY, Tu PF. Effects of Baoyuan decoction, a traditional Chinese medicine formula, on the activities and mRNA expression of seven CYP isozymes in rats. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:327-335. [PMID: 30048731 DOI: 10.1016/j.jep.2018.07.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/25/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baoyuan decoction (BYD), a traditional Chinese medicine (TCM) formula, is composed of four herbs and widely used with western drugs to treat coronary heart disease, aplastic anemia and chronic renal failure in clinic. However, no study of the effect of BYD on the cytochrome P450 (CYP) activities has been reported. AIM OF THE STUDY The purpose of the present study was to evaluate the potential influences of BYD on the activities of seven CYP isozymes (CYP1A2, 2B6, 2C9, 2C19, 2D6, 2E1, and 3A4) in rats. MATERIALS AND METHODS A sensitive and selective UPLC-MS/MS method for simultaneous determination of seven probe drugs and internal standard (IS) in rat plasma was developed and validated. The influence of BYD on the activities of CYP isozymes and mRNA expression levels were carried out by comparing plasma pharmacokinetics and real-time reverse transcription-polymerase chain reaction (RT-PCR) of probe drugs between control and BYD treatment groups respectively. RESULTS The calibration curve were linear, with correlation coefficient (r) > 0.99 for seven probe drugs. The intra and inter-assay accuracy and precision of the method were within ± 14.9% and the recoveries ranged from 83.2% to 106.1%. Compared with control group, BYD at low (1.46 g/kg) and high (7.30 g/kg) dosages could significantly increase Cmax and AUC0-t of chlorzoxazone and testosterone, while decrease AUC0-t of phenacetin at high dosage and increase AUC0-t of tolbutamide and metoprolol. Additionally, BYD had increased AUC0-t of bupropion at low dosage and decreased it at high dosage. The mRNA expression results were in accordance with those of pharmacokinetic. CONCLUSION BYD exhibited inhibitory effects on CYP2C9, CYP2E1, and CYP3A4. Moreover, BYD had induction effects on CYP1A2, and CYP2D6 activities. However, no significant change in CYP2C19 activity was observed. It would be useful for the safe and effective usage of BYD in clinic.
Collapse
Affiliation(s)
- Ying-Yuan Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Zhi-Yong Du
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Jin-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Ming-Bo Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Xiao-Yu Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| |
Collapse
|
14
|
Pang X, Wang LM, Zhang YC, Kang LP, Yu HS, Fan GW, Han LF. New anthraquinone and eurotinone analogue from the seeds of Senna obtusifolia and their inhibitory effects on human organic anion transporters 1 and 3. Nat Prod Res 2018; 33:3409-3416. [PMID: 29863900 DOI: 10.1080/14786419.2018.1480621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
A continuous phytochemical study on the seeds of Senna obtusifolia (Syn.: Cassia obtusifolia) led to the isolation of a new anthraquinone analogue, obtusifolin-2-O-β-D-(6'-O-α,β-unsaturated butyryl)-glucopyranoside (1) and a new eurotinone analogue, epi-9-dehydroxyeurotinone-β-D-glucopyranoside (2). Their structures were established mainly by NMR and MS experiments as well as the necessary chemical evidences. Their inhibitory effects on two organic anion transporters (OAT1 and OAT3) were investigated and the results showed that 1 exhibited a strongly specific inhibitory effect on OAT1 at 100 μM.
Collapse
Affiliation(s)
- Xu Pang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , China.,Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , China
| | - Li-Ming Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , China.,Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , China
| | - You-Cai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University , Tianjin , China
| | - Li-Ping Kang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China, Academy of Chinese Medical Sciences , Beijing , China
| | - He-Shui Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , China
| | - Guan-Wei Fan
- Central Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin , China
| | - Li-Feng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , China.,Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , China
| |
Collapse
|
15
|
Lepist EI, Ray AS. Beyond drug-drug interactions: effects of transporter inhibition on endobiotics, nutrients and toxins. Expert Opin Drug Metab Toxicol 2017; 13:1075-1087. [PMID: 28847160 DOI: 10.1080/17425255.2017.1372425] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Membrane transport proteins play a central role in regulating the disposition of endobiotics, dietary nutrients and environmental toxins. The inhibition of transporters by drugs has potential physiologic consequences. The full extent of the effect of drugs on the function of transporters is poorly understood because only a small subset of the hundreds of transporters expressed in humans - primarily those mediating the rate-determining step in the elimination of specific drugs - are assessed during clinical development. Areas covered: We provide a comprehensive overview of literature reports implicating the inhibition of transporters as the mechanism for off-target effects of drugs. Expert opinion: Transporter inhibition, the mechanism of action of many marketed drugs, appears to play an underappreciated role in a number of side effects including vitamin deficiency, edema, dyslipidemia, cholestasis and gout. Cell systems more broadly expressing transporter networks and methods like unbiased metabolomics should be incorporated into the screening paradigm to expand our understanding of the impact of drugs on the physiologic function of transporters and to allow for these effects to be taken into account in drug discovery and clinical practice.
Collapse
Affiliation(s)
- Eve-Irene Lepist
- a Departments of Drug Metabolism , Gilead Sciences, Inc ., Foster City , CA , USA
| | - Adrian S Ray
- b Clinical Research , Gilead Sciences, Inc ., Foster City , CA , USA
| |
Collapse
|