1
|
Song J, Wang H, Chu R, Zhao L, Li X, An S, Qiang M, Du W, Li Q. Differences in Physiological Characteristics, Seed Germination, and Seedling Establishment in Response to Salt Stress between Dimorphic Seeds in the Halophyte Suaeda liaotungensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1408. [PMID: 36987096 PMCID: PMC10054731 DOI: 10.3390/plants12061408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Soil salinization is an increasing agricultural problem around the world, affecting crop productivity and quality. Seed germination and seedling establishment are susceptible to salt stress. Suaeda liaotungensis is a halophyte with strong salt tolerance that produces dimorphic seeds to adapt to the saline environment. Differences in physiological characteristics, seed germination, and seedling establishment in response to salt stress between dimorphic seeds in S. liaotungensis have not been reported. The results showed that brown seeds had significantly higher H2O2 and O2-. levels and betaine content, as well as POD and CAT activities, while they had significantly lower MDA and proline contents and SOD activity than black seeds. Light promoted the germination of brown seeds in a certain temperature range, and brown seeds could reach a higher germination percentage in a wide temperature range. However, light and temperature had no effect on the germination percentage of black seeds. Brown seeds had higher germination than black seeds under the same NaCl concentration. The final germination of brown seeds was significantly decreased as salt concentration increased, whereas this had no effect on the final germination of black seeds. POD and CAT activities, as well as MDA content, in brown seeds were significantly higher than those in black seeds during germination under salt stress. Additionally, the seedlings from brown seeds were more tolerant to salinity than those from black seeds. Therefore, these results will give an in-depth understanding of the adaptation strategies of dimorphic seeds to a salinization environment, and better exploitation and utilization of S. liaotungensis.
Collapse
|
2
|
Optimum Sterilization Method for In Vitro Cultivation of Dimorphic Seeds of the Succulent Halophyte Suaeda aralocaspica. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Suaeda aralocaspica is an annual halophyte in the Amaranthaceae in the saline deserts of central Asia. This plant has succulent leaves and grape-like fruits and is a potential horticultural plant. To obtain the efficient sterilization method and optimal culture conditions, two types of seeds produced from a single plant of S. aralocaspica were treated with 75% ethanol for different time durations first, and then sodium hypochlorite (NaClO) or mercury chloride (HgCl2), with five different timing treatments were used for second seed surface sterilization. Sterilized seeds were germinated on a Murashige and Skoog (MS) medium at different potential hydrogenation (pH) levels, to examine germination and seedling performance. The results showed that the highest germination percentage of brown seeds was 100% and that of black seeds was 17%. Thus, brown seeds were more suitable for further culture experiments than black seeds. For brown seeds, the sterilization effect of NaClO was better than that of HgCl2, based on the results of seed germination, contamination, and seedling survival. Rinsing with 75% ethanol for 60 s, sterilizing with NaClO for 8 min, and cultivating at pH 8.0 MS for 7 days was the best of all sterilization procedures and cultivation methods tested, which has been successfully applied to S. aralocaspica in vitro culture. The optimized protocol described here can be used as the reference for the Suaeda genus.
Collapse
|
3
|
Nisar F, Gul B, Aziz I, Hameed A, Egan T. Increasing salinity leads to differential growth and H 2O 2 homeostasis in plants produced from heteromorphic seeds of the succulent halophyte Arthrocnemum indicum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:225-234. [PMID: 34119872 DOI: 10.1016/j.plaphy.2021.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Information about responses of plants grown from heteromorphic seeds is limited and inconclusive. This is especially true of subtropical halophytes where such studies have yet to be published. Therefore, growth, water-relations, and oxidative stress mitigation of plants germinated from the heteromorphic seeds of the succulent halophyte Arthrocnemum indicum under increasing (0, 300, and 900 mM NaCl) salinity were studied. Growth of plants from only small seeds was stimulated in moderate (300 mM NaCl) salinity. High (900 mM NaCl) salinity inhibited the growth of plants emerged from both small and large sized seeds. Plants germinating from both seed sizes demonstrated similar patterns of osmotic adjustment and did not develop signs of oxidative damage under increasing salinity. However, the magnitude of hydrogen peroxide and antioxidant responses differed between plant types. Under moderate salinity, plants from small seeds showed constitutive activities of most antioxidant enzymes (except superoxide dismutase) and levels of non-enzymatic antioxidants (except ascorbate). Conversely, a decline in activities of most antioxidant enzymes and levels of most non-enzymatic antioxidants occurred in plants from large seeds. While under high salinity, increased ascorbate peroxidase, glutathione, and polyphenol levels, along with unaffected ascorbate and superoxide dismutase levels, occurred in plants from small seeds. In plants from large seeds, there were increased ascorbate and polyphenol levels, but changes to the ascorbate peroxidase levels were not observed. These results thus indicate differential growth and hydrogen peroxide homeostasis in A. indicum plants emerged from heteromorphic seeds.
Collapse
Affiliation(s)
- Farah Nisar
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi-75270, Karachi, Pakistan
| | - Bilquees Gul
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi-75270, Karachi, Pakistan
| | - Irfan Aziz
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi-75270, Karachi, Pakistan
| | - Abdul Hameed
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi-75270, Karachi, Pakistan.
| | - Todd Egan
- Division of Mathematics and Natural Science, Elmira College, One Park Place, Elmira, NY, 14901, USA
| |
Collapse
|
4
|
Zhang H, Hu M, Ma H, Jiang L, Zhao Z, Ma J, Wang L. Differential Responses of Dimorphic Seeds and Seedlings to Abiotic Stresses in the Halophyte Suaeda salsa. FRONTIERS IN PLANT SCIENCE 2021; 12:630338. [PMID: 33912201 PMCID: PMC8072223 DOI: 10.3389/fpls.2021.630338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
The period between seed germination and seedling establishment is one of the most vulnerable stages in the life cycle of annuals in the saline environments. Although germination characteristics of Suaeda salsa seeds have been reported, the comparative germination patterns of dimorphic seeds and seedling growth to different abiotic stresses remain poorly understood. In this study, germination responses of dimorphic seeds to light and temperature were compared. Meanwhile, responses of dimorphic seeds and thereafter seedlings of S. salsa to different concentrations of NaCl and Na2SO4 were also tested. The results showed that the light did not significantly affect germination percentage of brown seeds, but significantly promoted germination of black seeds. Brown seeds could reach high germination percentage over a wide temperature range, however, germination of black seeds gradually increased with the increase of temperature. Brown seeds had higher germination percentage and velocity than black seeds under the same salt conditions. However, black seeds had higher recovery germination than brown seeds when transferred to deionized water. Young seedlings had lower salt tolerance than germinating seeds. At the same concentrations, Na2SO4 had stronger inhibitory effect on seed germination and seedling growth than NaCl. This study comprehensively compared germination traits of dimorphic seeds and seedling growth of S. salsa, and then developed a conceptual model to explain their adaptation to harsh saline environment.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingfang Hu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Hongyuan Ma
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Li Jiang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Zhenyong Zhao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinbiao Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Cao J, Chen L, Wang J, Xing J, Lv X, Maimaitijiang T, Lan H. Effects of genetic and environmental factors on variations of seed heteromorphism in Suaeda aralocaspica. AOB PLANTS 2020; 12:plaa044. [PMID: 33072248 PMCID: PMC7546916 DOI: 10.1093/aobpla/plaa044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 05/12/2023]
Abstract
Seed heteromorphism is an adaptive strategy towards adversity in many halophytes. However, the underlying mechanisms and ecological significance of seed heteromorphism have not been deeply explored. Using Suaeda aralocaspica, a typical C4 annual halophyte without Kranz anatomy, we studied seed morphology, differentiation of morphs and fruit-setting patterns, and correlated these traits with germination responses, seed characteristics and heteromorphic seed ratio. To elucidate the genetic basis of seed heteromorphism, we analysed correlated patterns of gene expression for seed development-related genes as well. We observed that S. aralocaspica produced three types of seed morph: brown, large black and small black with differences in colour, size, mass and germination behaviour; the latter two were further distinguished by their origin in female or bisexual flowers, respectively. Further analysis revealed that seed heteromorphism was associated with genetic aspects including seed positioning, seed coat differentiation and seed developmental gene expression, while variations in seed heteromorphism may be associated with environmental conditions, e.g. annual precipitation, temperature, daylight and their monthly distribution in different calendar years. Seed heteromorphism and its variations in S. aralocaspica show multilevel regulation of the bet-hedging strategy that influences phenotypic plasticity, which is a consequence of internal genetic and external environmental factor interaction. Our findings contribute to the understanding of seed heteromorphism as a potential adaptive trait of desert plant species.
Collapse
Affiliation(s)
- Jing Cao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Ling Chen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Juan Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Jiajia Xing
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiuyun Lv
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Tayier Maimaitijiang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- Corresponding author’s e-mail address:
| |
Collapse
|
6
|
Nisar F, Gul B, Khan MA, Hameed A. Heteromorphic seeds of coastal halophytes Arthrocnemum macrostachyum and A. indicum display differential patterns of hydrogen peroxide accumulation, lipid peroxidation and antioxidant activities under increasing salinity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:58-63. [PMID: 31557640 DOI: 10.1016/j.plaphy.2019.09.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 05/21/2023]
Abstract
Reactive oxygen species homeostasis during germination of heteromorphic seeds is not fully understood. This study elucidates changes in levels of hydrogen peroxide (H2O2), malondialdehyde (MDA) and enzymatic antioxidants in heteromorphic seeds of contrasting congeneric halophytes Arthrocnemum macrostachyum (C3 perennial) and A. indicum (C4 perennial) during germination under increasing salinity. There was no dormancy in A. macrostachyum (black and brown) and A. indicum (large and small) seeds. Seeds of A. macrostachyum displayed greater salinity tolerance compared to A. indicum seeds. Under non-saline conditions, large A. indicum seeds and brown A. macrostachyum seeds showed slightly higher germination than their respective counterparts. H2O2 content of black compared to brown A. macrostachyum seeds increased with salinity and that of small compared to large A. indicum seeds increased only in 400 mM NaCl. High catalase and ascorbate peroxidase with constitutive superoxide dismutase levels coincided with unaltered MDA in black A. macrostachyum seeds under salinity. Whereas, there was a decline in most antioxidant enzyme activities alongside low/unchanged H2O2 in the brown A. macrostachyum seeds under salinity. Unaltered H2O2 and MDA with low/unchanged antioxidant enzyme activities in large A. indicum seeds under salinity occurred. Unchanged enzyme activities alongside a rise in H2O2 and MDA levels were observed in the small A. indicum seeds under salinity. These data hence highlight differential H2O2 homeostasis strategies in the heteromorphic seeds of the test species.
Collapse
Affiliation(s)
- Farah Nisar
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| | - Bilquees Gul
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| | - M Ajmal Khan
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| | - Abdul Hameed
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
7
|
Wang L, Ma G, Wang H, Cheng C, Mu S, Quan W, Jiang L, Zhao Z, Zhang Y, Zhang K, Wang X, Tian C, Zhang Y. A draft genome assembly of halophyte Suaeda aralocaspica, a plant that performs C4 photosynthesis within individual cells. Gigascience 2019; 8:giz116. [PMID: 31513708 PMCID: PMC6741815 DOI: 10.1093/gigascience/giz116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/11/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The halophyte Suaeda aralocaspica performs complete C4 photosynthesis within individual cells (SCC4), which is distinct from typical C4 plants, which require the collaboration of 2 types of photosynthetic cells. However, despite SCC4 plants having features that are valuable in engineering higher photosynthetic efficiencies in agriculturally important C3 species such as rice, there are no reported sequenced SCC4 plant genomes, limiting our understanding of the mechanisms involved in, and evolution of, SCC4 photosynthesis. FINDINGS Using Illumina and Pacific Biosciences sequencing platforms, we generated ∼202 Gb of clean genomic DNA sequences having a 433-fold coverage based on the 467 Mb estimated genome size of S. aralocaspica. The final genome assembly was 452 Mb, consisting of 4,033 scaffolds, with a scaffold N50 length of 1.83 Mb. We annotated 29,604 protein-coding genes using Evidence Modeler based on the gene information from ab initio predictions, homology levels with known genes, and RNA sequencing-based transcriptome evidence. We also annotated noncoding genes, including 1,651 long noncoding RNAs, 21 microRNAs, 382 transfer RNAs, 88 small nuclear RNAs, and 325 ribosomal RNAs. A complete (circular with no gaps) chloroplast genome of S. aralocaspica 146,654 bp in length was also assembled. CONCLUSIONS We have presented the genome sequence of the SCC4 plant S. aralocaspica. Knowledge of the genome of S. aralocaspica should increase our understanding of the evolution of SCC4 photosynthesis and contribute to the engineering of C4 photosynthesis into economically important C3 crops.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Ganglong Ma
- Center for Genome Analysis, ABLife Inc., 388 Gaoxin 2nd Road, Wuhan, Hubei 430075, China
| | - Hongling Wang
- Central Lab, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China
| | - Chao Cheng
- Center for Genome Analysis, ABLife Inc., 388 Gaoxin 2nd Road, Wuhan, Hubei 430075, China
| | - Shuyong Mu
- Central Lab, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China
| | - Weili Quan
- Center for Genome Analysis, ABLife Inc., 388 Gaoxin 2nd Road, Wuhan, Hubei 430075, China
| | - Li Jiang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China
| | - Zhenyong Zhao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China
| | - Yu Zhang
- Center for Genome Analysis, ABLife Inc., 388 Gaoxin 2nd Road, Wuhan, Hubei 430075, China
| | - Ke Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China
| | - Xuelian Wang
- Center for Genome Analysis, ABLife Inc., 388 Gaoxin 2nd Road, Wuhan, Hubei 430075, China
| | - Changyan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc., 388 Gaoxin 2nd Road, Wuhan, Hubei 430075, China
| |
Collapse
|
8
|
Kumar A, Pathak RK, Gayen A, Gupta S, Singh M, Lata C, Sharma H, Roy JK, Gupta SM. Systems biology of seeds: decoding the secret of biochemical seed factories for nutritional security. 3 Biotech 2018; 8:460. [PMID: 30370201 PMCID: PMC6200710 DOI: 10.1007/s13205-018-1483-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/16/2018] [Indexed: 11/28/2022] Open
Abstract
Seeds serve as biochemical factories of nutrition, processing, bio-energy and storage related important bio-molecules and act as a delivery system to transmit the genetic information to the next generation. The research pertaining towards delineating the complex system of regulation of genes and pathways related to seed biology and nutrient partitioning is still under infancy. To understand these, it is important to know the genes and pathway(s) involved in the homeostasis of bio-molecules. In recent past with the advent and advancement of modern tools of genomics and genetic engineering, multi-layered 'omics' approaches and high-throughput platforms are being used to discern the genes and proteins involved in various metabolic, and signaling pathways and their regulations for understanding the molecular genetics of biosynthesis and homeostasis of bio-molecules. This can be possible by exploring systems biology approaches via the integration of omics data for understanding the intricacy of seed development and nutrient partitioning. These information can be exploited for the improvement of biologically important chemicals for large-scale production of nutrients and nutraceuticals through pathway engineering and biotechnology. This review article thus describes different omics tools and other branches that are merged to build the most attractive area of research towards establishing the seeds as biochemical factories for human health and nutrition.
Collapse
Affiliation(s)
- Anil Kumar
- Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh 284003 India
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Rajesh Kumar Pathak
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
- Department of Biotechnology, G. B. Pant Institute of Engineering and Technology, Pauri Garhwal, Uttarakhand 246194 India
| | - Aranyadip Gayen
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Supriya Gupta
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Manoj Singh
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Charu Lata
- Council of Scientific and Industrial Research-National Botanical Research Institute, Lucknow, India
| | - Himanshu Sharma
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Joy Kumar Roy
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Sanjay Mohan Gupta
- Molecular Biology and Genetic Engineering Laboratory, Defence Institute of Bio-Energy Research (DIBER), DRDO, Haldwani, 263139 India
| |
Collapse
|