1
|
López-Rodríguez A, Hernández M, Carrillo-Galvez A, Becerra J, Hernández V. Phytotoxic activity of Ulex europaeus, an invasive plant on Chilean ecosystems: separation and identification of potential allelochemicals. Nat Prod Res 2023; 37:769-775. [PMID: 35617490 DOI: 10.1080/14786419.2022.2081851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Despite its worldwide relevance as an invasive plant, there are few studies on Ulex europaeus (gorse) and its allelopathic activity is almost unexplored. The allelochemical profile of gorse was analysed through methanolic extract of pods and roots, and its phytotoxic effects on Lactuca sativa germination. The methanolic extract of pods had no effect in germination, while extract of roots resulted in a U-shaped dose-response curve: reducing the germination at concentration 0.5 mg mL-1. GC-MS analysis detected compounds with proven antimicrobial and antioxidant activities in the pods and cytotoxic compounds in the roots, which could explain the bioassay results. The quinolizidine alkaloids (QAs) composition was evaluated to predict possible biological functions. It showed the presence of QAs in gorse that are absent in their native range, indicating broad defense strategies against bacteria, fungi, plants, and insects in the Chilean ecosystem. This could explain the superiority of gorse in the invaded areas.
Collapse
Affiliation(s)
- Ariadna López-Rodríguez
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Martha Hernández
- Centro de Biotecnología, Facultad de Ciencias Forestales, Universidad de Concepción, Chile
| | | | - José Becerra
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Víctor Hernández
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
2
|
Comment on Pyrrolizidine Alkaloids and Terpenes from Senecio (Asteraceae): Chemistry and Research Gaps in Africa. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248868. [PMID: 36558004 PMCID: PMC9781224 DOI: 10.3390/molecules27248868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
The genus Senecio is one of the largest in Asteraceae. There are thousands of species across the globe, either confirmed or awaiting taxonomic delimitation. While the species are best known for the toxic pyrrolizidine alkaloids that contaminate honeys (as bees select pollen from the species) and teas via lateral transfer and accumulation from adjacent roots of Senecio in the rhizosphere, they are also associated with more serious cases leading to fatality of grazing ruminants or people by contamination or accidental harvesting for medicine. Surprisingly, there are significantly more sesquiterpenoid than pyrrolizidine alkaloid-containing species. The main chemical classes, aside from alkaloids, are flavonoids, cacalols, eremophilanes, and bisabolols, often in the form of furan derivatives or free acids. The chemistry of the species across the globe generally overlaps with the 469 confirmed species of Africa. A small number of species express multiple classes of compounds, meaning the presence of sesquiterpenes does not exclude alkaloids. It is possible that there are many species that express the pyrrolizidine alkaloids, in addition to the cacalols, eremophilanes, and bisabolols. The aim of the current communication is, thus, to identify the research gaps related to the chemistry of African species of Senecio and reveal the possible chemical groups in unexplored taxa by way of example, thereby creating a summary of references that could be used to guide chemical assignment in future studies.
Collapse
|
3
|
Acito M, Russo C, Fatigoni C, Mercanti F, Moretti M, Villarini M. Cytotoxicity and Genotoxicity of Senecio vulgaris L. Extracts: An In Vitro Assessment in HepG2 Liver Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14824. [PMID: 36429544 PMCID: PMC9690910 DOI: 10.3390/ijerph192214824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Senecio vulgaris L. is a herbaceous species found worldwide. The demonstrated occurrence of pyrrolizidine alkaloids in this species and its ability to invade a great variety of habitats result in a serious risk of contamination of plant material batches addressed to the herbal teas market; this presents a potential health risk for consumers. In light of the above, this work aimed to assess the cytotoxic and genotoxic activity of S. vulgaris extracts in HepG2 cells. Dried plants were ground and extracted using two different methods, namely an organic solvent-based procedure (using methanol and chloroform), and an environmentally friendly extraction procedure (i.e., aqueous extraction), which mimicked the domestic preparation of herbal teas (5, 15, and 30 min of infusion). Extracts were then tested in HepG2 cells for their cytotoxic and genotoxic potentialities. Results were almost superimposable in both extracts, showing a slight loss in cell viability at the highest concentration tested, and a marked dose-dependent genotoxicity exerted by non-cytotoxic concentrations. It was found that the genotoxic effect is even more pronounced in aqueous extracts, which induced primary DNA damage after five minutes of infusion even at the lowest concentration tested. Given the broad intake of herbal infusions worldwide, this experimental approach might be proposed as a screening tool in the analysis of plant material lots addressed to the herbal infusion market.
Collapse
Affiliation(s)
- Mattia Acito
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Carla Russo
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Cristina Fatigoni
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Federica Mercanti
- Sana Pianta Soc. Agricola S.a.s., Strada Tiberina Nord 228, 06134 Perugia, Italy
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
- Inter-University Centre for the Environment (CIPLA-Centro Interuniversitario per l’Ambiente), University of Perugia, Piazza Università 1, 06123 Perugia, Italy
| | - Milena Villarini
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| |
Collapse
|
4
|
Egli D, Harvey KJ, Moore BD, Mitchell C, Olckers T. Variations in chemical defences and patterns of natural enemy attack between native and introduced populations of fireweed (
Senecio madagascariensis
): Implications for biological control. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniella Egli
- School of Life Sciences University of KwaZulu‐Natal Private Bag X01 Scottsville 3209 South Africa
| | - Kerinne J. Harvey
- School of Life Sciences University of KwaZulu‐Natal Private Bag X01 Scottsville 3209 South Africa
| | - Ben D. Moore
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| | - Christopher Mitchell
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| | - Terence Olckers
- School of Life Sciences University of KwaZulu‐Natal Private Bag X01 Scottsville 3209 South Africa
| |
Collapse
|
5
|
Pyrrolizidine alkaloids of European Senecio/Jacobaea species in forage and their carry-over to milk: A review. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Metabolic Toxification of 1,2-Unsaturated Pyrrolizidine Alkaloids Causes Human Hepatic Sinusoidal Obstruction Syndrome: The Update. Int J Mol Sci 2021; 22:ijms221910419. [PMID: 34638760 PMCID: PMC8508847 DOI: 10.3390/ijms221910419] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Saturated and unsaturated pyrrolizidine alkaloids (PAs) are present in more than 6000 plant species growing in countries all over the world. They have a typical heterocyclic structure in common, but differ in their potential toxicity, depending on the presence or absence of a double bond between C1 and C2. Fortunately, most plants contain saturated PAs without this double bond and are therefore not toxic for consumption by humans or animals. In a minority of plants, however, PAs with this double bond between C1 and C2 exhibit strong hepatotoxic, genotoxic, cytotoxic, neurotoxic, and tumorigenic potentials. If consumed in error and in large emouns, plants with 1,2-unsaturated PAs induce metabolic breaking-off of the double bonds of the unsaturated PAs, generating PA radicals that may trigger severe liver injury through a process involving microsomal P450 (CYP), with preference of its isoforms CYP 2A6, CYP 3A4, and CYP 3A5. This toxifying CYP-dependent conversion occurs primarily in the endoplasmic reticulum of the hepatocytes equivalent to the microsomal fraction. Toxified PAs injure the protein membranes of hepatocytes, and after passing their plasma membranes, more so the liver sinusoidal endothelial cells (LSECs), leading to life-threatening hepatic sinusoidal obstruction syndrome (HSOS). This injury is easily diagnosed by blood pyrrolizidine protein adducts, which are perfect diagnostic biomarkers, supporting causality evaluation using the updated RUCAM (Roussel Uclaf Causality Assessment Method). HSOS is clinically characterized by weight gain due to fluid accumulation (ascites, pleural effusion, and edema), and may lead to acute liver failure, liver transplantation, or death. In conclusion, plant-derived PAs with a double bond between C1 and C2 are potentially hepatotoxic after metabolic removal of the double bond, and may cause PA-HSOS with a potential lethal outcome, even if PA consumption is stopped.
Collapse
|
7
|
Reinhard H, Zoller O. Pyrrolizidine alkaloids in tea, herbal tea and iced tea beverages- survey and transfer rates. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1914-1933. [PMID: 34237234 DOI: 10.1080/19440049.2021.1941302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The transfer rate of 37 pyrrolizidine alkaloids (PA) found in ten naturally contaminated teas and herbal teas to their brews was studied in detail. Mixed herbal, peppermint, red bush, senna, black tea and green tea infusions were prepared according to the ISO guide and vendor's instructions, respectively, and parameters like herb-to-water ratio, steeping time and multiple extractions studied. In general, a transfer rate of 38-100% (median 95%) for brews following vendor's instructions was determined. The total concentration range of PA in these ten samples was 154-2412 ng/g (median 422 ng/g) in the herb and for single analytes 0.1-170 ng/g. Seven of the 37 PA occurred unexpectedly; these were tentatively identified and quantified by liquid chromatography-high resolution mass spectrometry (LC-HR-MS), since their contributions to total PA-content matter. Additionally, 46 iced tea beverages were analysed for their PA-load, determined to be in the range 0-631 ng/L (median 40 ng/L). The applied solid-phase extraction (SPE) clean-up turned out to be capable of separating PA in the free base pyrrolizidine alkaloids (PAFB) and their N-oxides (PANO) in a two-step elution, which was a valuable tool to support identification of unexpected PA. Further, atropine was found in 50% of the ten tea herb samples (range: 1-4 ng/g) and in 13% of the iced tea beverage samples (range: 2-65 ng/L).
Collapse
Affiliation(s)
- Hans Reinhard
- Risk Assessment Division, Swiss Federal Food Safety and Veterinary Office (FSVO), Bern, Switzerland
| | - Otmar Zoller
- Risk Assessment Division, Swiss Federal Food Safety and Veterinary Office (FSVO), Bern, Switzerland
| |
Collapse
|
8
|
Hama JR, Strobel BW. Occurrence of pyrrolizidine alkaloids in ragwort plants, soils and surface waters at the field scale in grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142822. [PMID: 33348479 DOI: 10.1016/j.scitotenv.2020.142822] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 06/12/2023]
Abstract
Pyrrolizidine alkaloids (PA)s are natural toxins produced by a variety of plants including ragwort. The PAs present a serious health risk to human and livestock. Although these compounds have been extensively studied in food and feed, little is known regarding their environmental fate. To fill this data gap, we investigated the occurrence of PAs in ragwort plants, soils and surface waters at three locations where ragwort was the dominant plant species to better understand their environmental distribution. The concentrations of PAs were quantified during the full growing season (April-November) and assessed in relation to rain events. PA concentrations ranged from 3.2-6.6 g/kg dry weight (dw) in plants, 0.8-4.0 mg/kg dw in soils, and 6.0-529 μg/L in surface waters. Maximum PA concentrations in the soil (4 mg/kg) and water (529 μg/L) were in mid-May just before flowering. The average distribution of PAs in water was approximately 5 g/10,000 L, compared to the average amounts present in ragwort (506 kg/ha), and soil (1.7 kg/ha). In general, concentrations of PAs increase in the soil and surface water following rain events.
Collapse
Affiliation(s)
- Jawameer R Hama
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| | - Bjarne W Strobel
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
9
|
Lu AJ, Lu YL, Tan DP, Qin L, Ling H, Wang CH, He YQ. Identification of Pyrrolizidine Alkaloids in Senecio Plants by Liquid Chromatography-Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:1957863. [PMID: 34824876 PMCID: PMC8610691 DOI: 10.1155/2021/1957863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 05/04/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are considered as the major constituents that cause hepatoxicity in Senecio plants. PAs can be found in about 3%-5% of the world's flowering plants. Nowadays, the identification method of PAs by separation and preparation was too slow and lacked effective power. A rapid method to identify PAs in plants must be developed. Based on the fragmentation regularity, the hepatoxic PAs and nonhepatoxic PAs were characterized by liquid chromatography-mass spectrometry (LC-MS). The detailed structures of PAs in five Senecio plants were identified based on tandem mass spectrometry (MS/MS) spectrum and chemical research information. In the present study, some new fragmentation regularities of PAs have been found, such as product ions at m/z 122, m/z 140 and m/z 124, m/z 142, which have been discovered as the characteristic fragments of lactone and mono-esterase type of saturated PAs, respectively. Moreover, two product ions at m/z 120 and m/z 138 have been reported as the characteristic fragments of unsaturated PAs. Some of them were found in Senecio species for the first time, and some of them may be new nature product or even new compound. Finally, we classified these plants into five categories based on PAs which were identified in the present study; the result corresponded with the classification by morphology. In addition, we have found some constituents that have odd molecular weight number only in Senecio species but not in Ligularia species; the detailed structures of these non-PAs constituents need penetrating study. LC-MS was rapid and sensitive method for detecting and identifying PAs in plants. Pyrrolizidine alkaloids were the toxiferous constituent of Senecio plants. In this study, we found that PAs can be used as the characteristic constituent of Senecio species.
Collapse
Affiliation(s)
- An-Jing Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yan-Liu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Dao-Peng Tan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lin Qin
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Hua Ling
- School of Pharmacy, Georgia Campus-Philadelphia College of Osteopathic Medicine, 625 Old Peachtree Rd NW, Suwanee, GA 30024, USA
| | - Chang-Hong Wang
- Shanghai Key Laboratory of Complex Prescription, Shanghai University of Traditional Chinese Medicine, 1200 Cai-Lun Road, Shanghai 201203, China
| | - Yu-Qi He
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| |
Collapse
|
10
|
Kopp T, Abdel-Tawab M, Mizaikoff B. Extracting and Analyzing Pyrrolizidine Alkaloids in Medicinal Plants: A Review. Toxins (Basel) 2020; 12:E320. [PMID: 32413969 PMCID: PMC7290370 DOI: 10.3390/toxins12050320] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are distributed in plant families of Asteraceae, Boraginaceae, and Fabaceae and serve in the chemical defense mechanism against herbivores. However, they became a matter of concern due to their toxicity associated with the high risk of intake within herbal preparations, e.g., phytopharmaceutical formulations, medicinal teas, or other plant-derived drug products. In 1992, the German Federal Ministry of Health established the first limits of PA content for fourteen medicinal plants. Because of the toxic effects of PAs, the Federal Institute of Risk Assessment (BfR) established more stringent limits in 2011, whereby a daily intake <0.007 µg/kg body weight was recommended and valid until 2018. A threefold higher limit was then advised by BfR. To address consumer safety, there is the need for more efficient extraction procedures along with robust, selective, and sensitive analytical methods to address these concerns. With the increased prevalence of, e.g., phytopharmaceutical formulations, this timely review comprehensively focuses on the most relevant extraction and analysis strategies for each of those fourteen plant genera. While a variety of extraction procedures has been reported, differences in PA content of up to 1110 ppm (0.11% (w/w)) were obtained dependent on the nature of the solvent and the applied extraction technique. It is evident that the efficient extraction of PAs requires further improvements or at least standardization of the extraction conditions. Comparing the various analytical techniques applied regarding selectivity and sensitivity, LC-MS methods appear most suited. This review shows that both standardized extraction and sensitive determination of PAs is required for achieving appropriate safety levels concerning public health in future.
Collapse
Affiliation(s)
- Thomas Kopp
- Department of Chemistry, Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany;
- Central Laboratory of German Pharmacists, 65760 Eschborn, Germany;
| | - Mona Abdel-Tawab
- Central Laboratory of German Pharmacists, 65760 Eschborn, Germany;
| | - Boris Mizaikoff
- Department of Chemistry, Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany;
| |
Collapse
|
11
|
Flade J, Beschow H, Wensch-Dorendorf M, Plescher A, Wätjen W. Occurrence of Nine Pyrrolizidine Alkaloids in Senecio vulgaris L. Depending on Developmental Stage and Season. PLANTS (BASEL, SWITZERLAND) 2019; 8:E54. [PMID: 30841617 PMCID: PMC6473320 DOI: 10.3390/plants8030054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 01/27/2023]
Abstract
The contamination of phytopharmaceuticals and herbal teas with toxic plants is an increasing problem. Senecio vulgaris L. is a particularly noxious weed in agricultural and horticultural crops due to its content of toxic pyrrolizidine alkaloids (PAs). Since some of these compounds are carcinogenic, the distribution of this plant should be monitored. The amount of PAs in S. vulgaris is affected by various factors. Therefore, we investigated the occurrence of PAs depending on the developmental stage and season. A systematic study using field-plot experiments (four seasons, five developmental stages of the plants: S1 to S5) was performed and the PA concentration was determined via LC-MS/MS analysis. The total amount of PAs in the plant increased with the plant development, however, the total PA concentrations in µg/g dry matter remained nearly unchanged, whilst trends for specific PAs were observed. The concentrations of PA-N-oxides (PANOs) were much higher than that of tertiary PAs. Maximal amounts of the PA total were 54.16 ± 4.38 mg/plant (spring, S5). The total amount of PAs increased strongly until later developmental stages. Therefore, even small numbers of S. vulgaris may become sufficient for relevant contaminations set out by the maximal permitted daily intake levels recommended by the European Food Safety Authority (EFSA).
Collapse
Affiliation(s)
- Jens Flade
- Plant Nutrition, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Strasse 3, 06120 Halle/Saale, Germany.
- PHARMAPLANT Arznei- und Gewürzpflanzen Forschungs- und Saatzucht GmbH, Am Westbahnhof 4, 06556 Artern, Germany.
- Biofunctionality of Secondary Plant Compounds, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale, Germany.
| | - Heidrun Beschow
- Plant Nutrition, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Strasse 3, 06120 Halle/Saale, Germany.
| | - Monika Wensch-Dorendorf
- AG Biometrie und Agrarinformatik, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Strasse 4, 06120 Halle/Saale, Germany.
| | - Andreas Plescher
- PHARMAPLANT Arznei- und Gewürzpflanzen Forschungs- und Saatzucht GmbH, Am Westbahnhof 4, 06556 Artern, Germany.
| | - Wim Wätjen
- Biofunctionality of Secondary Plant Compounds, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale, Germany.
| |
Collapse
|
12
|
Cheng D, Tian Z, Feng L, Xu L, Wang H. Diversity analysis of the rhizospheric and endophytic bacterial communities of Senecio vulgaris L. (Asteraceae) in an invasive range. PeerJ 2019; 6:e6162. [PMID: 30643678 PMCID: PMC6327885 DOI: 10.7717/peerj.6162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/25/2018] [Indexed: 11/20/2022] Open
Abstract
Increasing evidence has confirmed the importance of plant-associated bacteria for plant growth and productivity, and thus it is hypothesized that interactions between bacteria and alien plants might play an important role in plant invasions. However, the diversity of the bacterial communities associated with invasive plants is poorly understood. We therefore investigated the diversity of rhizospheric and endophytic bacteria associated with the invasive annual plant Senecio vulgaris L. (Asteraceae) based on 16S rRNA gene data obtained from 57 samples of four Senecio vulgaris populations in a subtropical mountainous area in central China. Significant differences in diversity were observed between plant compartments. Specifically, the rhizosphere harbored many more bacterial operational taxonomic units and showed higher alpha diversity than the leaf and root endospheres. The relative abundance profiles of the bacterial community composition differed substantially between the compartments and populations, especially at the phylum and family levels. However, the top five phyla (Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Acidobacteria) accounted for more than 90% of all the bacterial communities. Moreover, similar endophytic communities with a shared core set of bacteria were observed from different Senecio vulgaris populations. Heavy-metal-resistant, phosphate-solubilizing bacteria (Brevundimonas diminuta), nitrogen-fixing bacteria (Rhizobium leguminosarum), and cold-resistant bacteria (Exiguobacterium sibiricum) were present in the endosphere at relatively high abundance. This study, which reveals the structure of bacterial communities and their putative function in invasive Senecio vulgaris plants, is the first step in investigating the role of plant-bacteria interactions in the invasion of this species in China.
Collapse
Affiliation(s)
- Dandan Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China
| | - Zhongsai Tian
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Liang Feng
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Lin Xu
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China
| |
Collapse
|
13
|
Duan RY, Xiang GH, Lin YX, Luo YC, Peng RM. The complete chloroplast genome of the invasive plant Senecio vulgaris L. (Asteraceae). Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1612295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Ren-Yan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, PR China
- Anhui Key Laboratory of Biodiversity Studies and Ecological Conservation in Southwestern Anhui Province, Anqing Normal University, Anqing, PR China
| | - Guo-Hong Xiang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, PR China
| | - Yu-Xiang Lin
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, PR China
| | - Yu-Cai Luo
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, PR China
| | - Ri-Min Peng
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, PR China
| |
Collapse
|