1
|
Li N, Li X, Zhou J, Yu L, Li S, Zhang Y, Qin R, Gao W, Deng C. Genome-Wide Analysis of Transposable Elements and Satellite DNAs in Spinacia Species to Shed Light on Their Roles in Sex Chromosome Evolution. FRONTIERS IN PLANT SCIENCE 2021; 11:575462. [PMID: 33519837 PMCID: PMC7840529 DOI: 10.3389/fpls.2020.575462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/17/2020] [Indexed: 05/02/2023]
Abstract
Sex chromosome evolution has mostly been studied in species with heteromorphic sex chromosomes. The Spinacia genus serves as an ideal model for investigating evolutionary mechanisms underlying the transition from homomorphic to heteromorphic sex chromosomes. Among evolutionary factors, repetitive sequences play multiple roles in sex chromosome evolution while their forces have not been fully explored in Spinacia species. Here, we identified major repetitive sequence classes in male and female genomes of Spinacia species and their ancestral relative sugar beet to elucidate the evolutionary processes of sex chromosome evolution using next-generation sequencing (NGS) data. Comparative analysis revealed that the repeat elements of Spinacia species are considerably higher than of sugar beet, especially the Ty3/Gypsy and Ty1/Copia retrotransposons. The long terminal repeat retroelements (LTR) Angela, Athila, and Ogre may be accounted for the higher proportion of repeats in the spinach genome. Comparison of the repeats proportion between female and male genomes of three Spinacia species indicated the different representation in Spinacia tetrandra samples but not in the S. oleracea or S. turkestanica samples. From these results, we speculated that emergence of repetitive DNA sequences may correlate the formation of sex chromosome and the transition from homomorphic sex chromosomes to heteromorphic sex chromosomes as heteromorphic sex chromosomes exclusively existed in Spinacia tetrandra. Three novel sugar beet-specific satellites were identified and confirmed by fluorescence in situ hybridization (FISH); six out of eight new spinach-specific satellites were mapped to the short arm of sex chromosomes. A total of 141 copies of SolSat01-171-s were found in the sex determination region (SDR). Thus, the accumulation of satellite DNA on the short arm of chromosome 1 may be involved in the sex chromosome evolution in Spinacia species. Our study provides a fundamental resource for understanding repeat sequences in Spinacia species and their roles in sex chromosome evolution.
Collapse
Affiliation(s)
- Ning Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xiaoyue Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Jian Zhou
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Li’ang Yu
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Shufen Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yulan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ruiyun Qin
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wujun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Chuanliang Deng
- College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
2
|
Nishitsuji K, Arimoto A, Yonashiro Y, Hisata K, Fujie M, Kawamitsu M, Shoguchi E, Satoh N. Comparative genomics of four strains of the edible brown alga, Cladosiphon okamuranus. BMC Genomics 2020; 21:422. [PMID: 32586267 PMCID: PMC7318753 DOI: 10.1186/s12864-020-06792-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/21/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The brown alga, Cladosiphon okamuranus (Okinawa mozuku), is one of the most important edible seaweeds, and it is cultivated for market primarily in Okinawa, Japan. Four strains, denominated S, K, O, and C, with distinctively different morphologies, have been cultivated commercially since the early 2000s. We previously reported a draft genome of the S-strain. To facilitate studies of seaweed biology for future aquaculture, we here decoded and analyzed genomes of the other three strains (K, O, and C). RESULTS Here we improved the genome of the S-strain (ver. 2, 130 Mbp, 12,999 genes), and decoded the K-strain (135 Mbp, 12,511 genes), the O-strain (140 Mbp, 12,548 genes), and the C-strain (143 Mbp, 12,182 genes). Molecular phylogenies, using mitochondrial and nuclear genes, showed that the S-strain diverged first, followed by the K-strain, and most recently the C- and O-strains. Comparisons of genome architecture among the four strains document the frequent occurrence of inversions. In addition to gene acquisitions and losses, the S-, K-, O-, and C-strains possess 457, 344, 367, and 262 gene families unique to each strain, respectively. Comprehensive Blast searches showed that most genes have no sequence similarity to any entries in the non-redundant protein sequence database, although GO annotation suggested that they likely function in relation to molecular and biological processes and cellular components. CONCLUSIONS Our study compares the genomes of four strains of C. okamuranus and examines their phylogenetic relationships. Due to global environmental changes, including temperature increases, acidification, and pollution, brown algal aquaculture is facing critical challenges. Genomic and phylogenetic information reported by the present research provides useful tools for isolation of novel strains.
Collapse
Affiliation(s)
- Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| | - Asuka Arimoto
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
- Present address: Marine Biological Laboratory, Graduate School of Integrated Sciences for Life, Hiroshima University, Onomichi, Hiroshima, 722-0073, Japan
| | - Yoshitaka Yonashiro
- Okinawa Prefectural Fisheries Research and Extension Center, Itoman, Okinawa, 901-0354, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Mayumi Kawamitsu
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
3
|
Gichuki DK, Ma L, Zhu Z, Du C, Li Q, Hu G, Zhong Z, Li H, Wang Q, Xin H. Genome size, chromosome number determination, and analysis of the repetitive elements in Cissus quadrangularis. PeerJ 2019; 7:e8201. [PMID: 31875149 PMCID: PMC6927348 DOI: 10.7717/peerj.8201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 11/13/2019] [Indexed: 02/03/2023] Open
Abstract
Cissus quadrangularis (Vitaceae) is a perennial climber endemic to Africa and is characterized by succulent angular stems. The plant grows in arid and semi-arid regions of Africa especially in the African savanna. The stem of C. quadrangularis has a wide range of applications in both human and animal medicine, but there is limited cytogenetic information available for this species. In this study, the chromosome number, genome size, and genome composition for C. quadrangularis were determined. Flow cytometry results indicated that the genome size of C. quadrangularis is approximately 2C = 1.410 pg. Fluorescence microscopy combined with DAPI stain showed the chromosome numbers to be 2n = 48. It is likely that C. quadrangularis has a tetraploid genome after considering the basic chromosome numbers in Cissus genus (n = 10, 11, or 12). A combination of low-throughput genome sequencing and bioinformatics analysis allowed identification and quantification of repetitive elements that make up about 52% of the C. quadrangularis genome, which was dominated by LTR-retrotransposons. Two LTR superfamilies were identified as Copia and Gypsy, with 24% and 15% of the annotated clusters, respectively. The comparison of repeat elements for C. quadrangularis, Vitis vinifera, and four other selected members in the Cissus genus revealed a high diversity in the repetitive element components, which could suggest recent amplification events in the Cissus genus. Our data provides a platform for further studies on the phylogeny and karyotype evolution in this genus and in the family Vitaceae.
Collapse
Affiliation(s)
- Duncan Kiragu Gichuki
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, Peoples Republic of China
| | - Lu Ma
- Shenzhen Tobeacon Technology Co. Ltd., Shenzhen, Peoples Republic of China
| | - Zhenfei Zhu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, Peoples Republic of China
| | - Chang Du
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Qingyun Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Guangwan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Zhixiang Zhong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Honglin Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Qingfeng Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Haiping Xin
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
4
|
Tyagi A, Sandhya, Sharma P, Saxena S, Sharma R, Amitha Mithra SV, Solanke AU, Singh NK, Sharma TR, Gaikwad K. The genome size of clusterbean (Cyamopsis tetragonoloba) is significantly smaller compared to its wild relatives as estimated by flow cytometry. Gene 2019; 707:205-211. [PMID: 30898697 DOI: 10.1016/j.gene.2019.02.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/04/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023]
Abstract
Clusterbean (C. tetragonoloba) is an important, leguminous vegetable and industrial crop with vast genetic diversity but meager genetic, cytological and genomic information. In the present study, an optimized procedure of flow cytometry was used to estimate the genome size of three clusterbean species, represented by C. tetragonoloba (cv. RGC-936) and two wild relatives (C. serreta and C. senegalensis). For accurate estimation of genomic content, singlet G0/G1 populations of multiple tissues such as leaves, hypocotyl, and matured seeds were determined and used along with three different plant species viz. Pisum sativum (as primary), Oryza sativa, and Glycine max (secondary), as external and internal reference standards. Seed tissue of the test sample and G. max provided the best estimate of nuclear DNA content in comparison to other sample tissues and reference standards. The genome size of C. tetragonoloba was detemined at 580.9±0.02Mbp (1C), while that of C. serreta and C. senegalensis was estimated at 979.6±0.02Mbp (1C) and 943.4±0.03Mbp (1C), respectively. Thus, the wild relatives harbor, nearly double the genome content of the cultivated cluster bean. Findings of this study will enrich genomic database of the legume family and can serve as the starting point for clusterbean evolutionary and genomics studies.
Collapse
Affiliation(s)
- Anshika Tyagi
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Sandhya
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Priya Sharma
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Swati Saxena
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Ramavtar Sharma
- ICAR-Central Arid Zone Research Institute (CAZRI), Jodhpur, India
| | - S V Amitha Mithra
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | | | | | - Tilak Raj Sharma
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Kishor Gaikwad
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India.
| |
Collapse
|