1
|
Mandal D, Akhtar N, Shafi S, Gupta J. Phytoestrogens and Sirtuin Activation for Renal Protection: A Review of Potential Therapeutic Strategies. PLANTA MEDICA 2025. [PMID: 39626791 DOI: 10.1055/a-2464-4354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Significant health and socio-economic challenges are posed by renal diseases, leading to millions of deaths annually. The costs associated with treating and caring for patients with renal diseases are considerable. Current therapies rely on synthetic drugs that often come with side effects. However, phytoestrogens, natural compounds, are emerging as promising renal protective agents. They offer a relatively safe, effective, and cost-efficient alternative to existing therapies. Phytoestrogens, being structurally similar to 17-β-estradiol, bind to estrogen receptors and produce both beneficial and, in some cases, harmful health effects. The activation of sirtuins has shown promise in mitigating fibrosis and inflammation in renal tissues. Specifically, SIRT1, which is a crucial regulator of metabolic activities, plays a role in protecting against nephrotoxicity, reducing albuminuria, safeguarding podocytes, and lowering reactive oxygen species in diabetic glomerular injury. Numerous studies have highlighted the ability of phytoestrogens to activate sirtuins, strengthen antioxidant defense, and promote mitochondrial biogenesis, playing a vital role in renal protection during kidney injury. These findings support further investigation into the potential role of phytoestrogens in renal protection. This manuscript reviews the potential of phytoestrogens such as resveratrol, genistein, coumestrol, daidzein, and formononetin in regulating sirtuin activity, particularly SIRT1, and thereby providing renal protection. Understanding these mechanisms is crucial for designing effective treatment strategies using naturally occurring phytochemicals against renal diseases.
Collapse
Affiliation(s)
- Debojyoti Mandal
- School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab, India
| | - Sana Shafi
- Molecular Medicine & Pathology (MMP) Matauranga Hauora, Faculty of Medical and Health Sciences Waipapa Taumata Rau, University of Auckland, Aotearoa, New Zealand
| | - Jeena Gupta
- School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab, India
| |
Collapse
|
2
|
Won JP, Lee HG, Yoon HJ, Seo HG. Biochanin A-mediated anti-ferroptosis is associated with reduction of septic kidney injury. Life Sci 2024; 358:123124. [PMID: 39396639 DOI: 10.1016/j.lfs.2024.123124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
AIMS This study aimed to investigate the therapeutic potential of biochanin A in a sepsis associated- acute kidney injury (SA-AKI) mouse model induced by lipopolysaccharide (LPS). MAIN METHODS Male BALB/C mice (n = 7 per group) were injected with biochanin A (40 mg/kg, i.p.) or ferrostatin-1 (5 mg/kg, i.p.) in the presence or absence of LPS (10 mg/kg, i.p.). Survival rates were monitored twice a day for up to 2 weeks. Morphologic and functional changes in kidney tissue were assessed by H&E staining and by analyzing of levels of blood-urea nitrogen (BUN) and creatinine (CR) in serum, respectively. Kidney epithelial cell death was analyzed by TUNEL staining, Prussian blue staining, iron quantification, lipid peroxide quantification, and glutathione quantification. Anti-ferroptosis mechanism of biochanin A was analyzed by RNA sequencing in mouse embryonic fibroblast cells. KEY FINDINGS Biochanin A increased the survival rate of septic mice and inhibited the secretion of high mobility group box 1, an important inflammatory mediator in sepsis. Biochanin A inhibited LPS-induced kidney damage by suppressing dilatation and kidney tubular epithelial cell death. Furthermore, serum levels of BUN and CR were reduced in biochanin A-treated endotoxemic mice. Biochanin A inhibited the accumulation of iron and lipid peroxide and prevented glutathione depletion in the kidney tissue. Also, nine genes associated with the anti-ferroptosis effects of biochanin A were identified by RNA sequencing analysis. SIGNIFICANCE The present study suggests that biochanin A is an effective inhibitor of ferroptosis, representing a potential treatment or prophylactic for sepsis-related disorders such as SA-AKI.
Collapse
Affiliation(s)
- Jun Pil Won
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyuk Gyoon Lee
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Han Jun Yoon
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
3
|
Zhou D, Sun L, Li J, Yang Y. Schisandrin B inhibits inflammation and ferroptosis in S.aureus-induced mastitis through regulating SIRT1/p53/SLC7A11 signaling pathway. Int Immunopharmacol 2024; 137:112430. [PMID: 38852519 DOI: 10.1016/j.intimp.2024.112430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Mastitis, one of the most significant problems in women, is commonly caused by pathogens, especially Staphylococcus aureus (S.aureus). Schisandrin B (SCB), the main abundant derivatives from Schisandra chinensis, has been proven to have the ability to inhibiting inflammation and bacteria. However, few relevant researches systematically illustrate the role SCB in the treatment of mastitis. The aim of the present study is to demonstrate the mechanism that SCB functions in reducing pathological injury to the mammary gland in treating S.aureus-induced mastitis. H&E staining was used to identify pathological changes and injuries in mastitis. The levels of cytokines associated with inflammation were detected by ELISA. Key signals relevant to ferroptosis and Nrf2 signaling pathway were tested by western blot analysis and iron assay kit. Compared with the control group, inflammation-associated factors, such as IL-1β, TNF-α, MPO activity, increased significantly in S. aureus-treated mice. However, these changes were inhibited by SCB. Ferroptosis-associated factors Fe2+ and MDA increased significantly, and GSH, GPX4 and ferritin expression decreased markedly in S. aureus-treated mice. SCB treatment could attenuate S.aureus-induced ferroptosis. Furthermore, SCB increase SIRT1 and SLC7A11 expression and down-regulated p53 expression and NF-κB activation. In conclusion, SCB alleviates S.aureus-induced mastitis via up-regulating SIRT1/p53/SLC7A11 signaling pathway, attenuating the activation of inflammation-associated cytokines and ferroptosis in the mammary gland tissues.
Collapse
Affiliation(s)
- Di Zhou
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Liang Sun
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Jun Li
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China.
| | - Yang Yang
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China.
| |
Collapse
|
4
|
Ding M, Bao Y, Liang H, Zhang X, Li B, Yang R, Zeng N. Potential mechanisms of formononetin against inflammation and oxidative stress: a review. Front Pharmacol 2024; 15:1368765. [PMID: 38799172 PMCID: PMC11116718 DOI: 10.3389/fphar.2024.1368765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Formononetin (FMNT) is a secondary metabolite of flavonoids abundant in legumes and graminaceous plants such as Astragalus mongholicus Bunge [Fabaceae; Astragali radix] and Avena sativa L. [Poaceae]. Astragalus is traditionally used in Asia countries such as China, Korea and Mongolia to treat inflammatory diseases, immune disorders and cancers. In recent years, inflammation and oxidative stress have been found to be associated with many diseases. A large number of pharmacological studies have shown that FMNT, an important bioactive metabolite of Astragalus, has a profoundly anti-inflammatory and antioxidant potential. This review focuses on providing comprehensive and up-to-date findings on the efficacy of the molecular targets and mechanisms involve of FMNT and its derivatives against inflammation and oxidative stress in both in vitro and in vivo. Relevant literature on FMNT against inflammation and oxidative stress between 2013 and 2023 were analyzed. FMNT has antioxidant and anti-inflammatory potential and shows mild or no toxicity in various diseases. Moreover, in the medical field, FMNT has shown potential in the prevention and treatment of cancers, neurological diseases, fibrotic diseases, allergic diseases, metabolic diseases, cardiovascular diseases, gastrointestinal diseases and autoimmune diseases. Thus, it is expected to be utilized in more products in the medical, food and cosmetic industries in the future.
Collapse
Affiliation(s)
- Meiling Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiwen Bao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiongwei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruocong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Wang Q, Zhen W, Lippi G, Liu Q. The effect of Astragali Radix-Radix Angelica Sinensis on acute kidney injury: a network pharmacology and molecular docking study. Transl Androl Urol 2024; 13:91-103. [PMID: 38404557 PMCID: PMC10891378 DOI: 10.21037/tau-23-562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024] Open
Abstract
Background Acute kidney injury (AKI) is a devastating clinical syndrome with high mortality rate attributed to lack of effective treatment. The herbal pair of Astragali Radix (AR) and Radix Angelica Sinensis (RAS) is a commonly prescribed herbal formula or is added to other traditional Chinese medicine (TCM) prescriptions for the treatment of kidney diseases. AR-RAS has certain protective effects on AKI in experiments, but the relevant mechanisms have yet to be clear. So this study aims to explore the mechanism of action of AR-RAS in AKI by combining network pharmacology and molecular docking methods. Methods In Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), the major AR-RAS chemical components and associated action targets were found and screened. The DrugBank and GeneCards databases were used to find AKI-related targets. The targets that are in close relationship with AKI were obtained from Therapeutic Target database (TTD), Online Mendelian Inheritance in Man (OMIM), and PharmGKB databases. The "herb-active ingredient-target" network was drawn by Cytoscape 3.8.0 software. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was used to build the protein-protein interaction network. Bioconductor/R was used to examine Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. AR-RAS components and critical targets were docked using the AutoDock Vina program. Results A compound-target network, built by screening and analyzing the results, allowed to identify 19 active components and 101 possible therapeutic targets for AKI. The main ingredients were quercetin, kaempferol, 7-o-methylisocronulatol, formononetin and isorhamnetin. The key targets included AKT serine/threonine kinase 1 (AKT1), nuclear receptor coactivator 1 (NCOA1), JUN, estrogen receptor alpha (ESR1) and mitogen-activated protein kinase 8 (MAPK8). These molecules are targeted by pathways such as the calcium signaling route, the tumor necrosis factor (TNF) signaling pathway and the interleukin-17 (IL-17) signaling pathway, as well as the development of T helper 17 cells. Molecular docking demonstrated that AR-active RAS components exhibited strong binding activities to probable targets of AKI. Conclusions We described here the potential active ingredients, possible targets responsible for the efficacy of AR-RAS in AKI treatment, providing a theoretical basis for further research.
Collapse
Affiliation(s)
- Qin Wang
- Suzhou Medical College of Soochow University, Suzhou, China
- Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wenrui Zhen
- Department of Intervention Therapy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Giuseppe Lippi
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
| | - Qi Liu
- Suzhou Medical College of Soochow University, Suzhou, China
- Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
Chen H, Deng J, Gao H, Song Y, Zhang Y, Sun J, Zhai J. Involvement of the SIRT1-NLRP3 pathway in the inflammatory response. Cell Commun Signal 2023; 21:185. [PMID: 37507744 PMCID: PMC10375653 DOI: 10.1186/s12964-023-01177-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 07/30/2023] Open
Abstract
The silent information regulator 2 homolog 1-NACHT, LRR and PYD domains-containing protein 3 (SIRT1-NLRP3) pathway has a crucial role in regulation of the inflammatory response, and is closely related to the occurrence and development of several inflammation-related diseases. NLRP3 is activated to produce the NLRP3 inflammasome, which leads to activation of caspase-1 and cleavage of pro-interleukin (IL)-1β and pro-IL-18 to their active forms: IL-1β and IL-18, respectively. They are proinflammatory cytokines which then cause an inflammatory response.SIRT1 can inhibit this inflammatory response through nuclear factor erythroid 2-related factor 2 and nuclear factor-kappa B pathways. This review article focuses mainly on how the SIRT1-NLRP3 pathway influences the inflammatory response and its relationship with melatonin, traumatic brain injury, neuroinflammation, depression, atherosclerosis, and liver damage. Video Abstract.
Collapse
Affiliation(s)
- Huiyue Chen
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
- School of Pharmaceutical Science, Jilin University, Changchun, Jilin, China
| | - Jiayu Deng
- Department of Pharmacy, Lequn Branch, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Huan Gao
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
| | - Yanqing Song
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
- School of Pharmaceutical Science, Jilin University, Changchun, Jilin, China
- Department of Pharmacy, Lequn Branch, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Yueming Zhang
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
| | - Jingmeng Sun
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
| | - Jinghui Zhai
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China.
| |
Collapse
|
7
|
Wu T, Ren C, Dou X, Wu Y, Dong N, Zhang H, Yao Y. INTERLEUKIN-35 DOWNREGULATES THE IMMUNE RESPONSE OF EFFECTOR CD4 + T CELLS VIA RESTRICTING HIGH MOBILITY GROUP BOX-1 PROTEIN-DEPENDENT AUTOPHAGY IN SEPSIS. Shock 2023; 59:277-287. [PMID: 36731088 DOI: 10.1097/shk.0000000000001990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT Background: Immunosuppression is critically involved in the development of sepsis and is closely associated with poor outcomes. The novel role of the anti-inflammatory cytokine IL-35 in sepsis was examined. Methods: Sepsis was induced by in C57BL/6 mice cecal ligation and puncture (CLP). The impacts of IL-35 on effector CD4 + T cells were investigated by examining cell proliferation and the Th1/Th2 ratio in the presence of recombinant IL-35 (rIL-35) or anti-IL-35 (EBI3). The regulatory effect of IL-35 on autophagy was evaluated by measuring autophagy markers and autophagic flux in CLP mice in vivo and in activated effector CD4 + T cells in vitro . Results: IL-35 levels were significantly increased in the serum and spleens of septic mice. rIL-35 administration after CLP further decreased proliferation and the Th1/Th2 ratio in effector CD4 + T cells and significantly shortened the survival time. Sepsis-induced autophagy activation was protective in effector CD4 + T cells and was blocked by rIL-35. The inhibitory effect of IL-35 on autophagy was observed in activated effector CD4 + T cells in vitro , and this effect was mediated by restricting high mobility group box-1 protein (HMGB1) translocation. Conclusion: IL-35 is an immunosuppressive cytokine that impairs CD4 + T-cell proliferation and differentiation in sepsis, and the effect might be mediated by reducing HMGB1-dependent autophagy.
Collapse
Affiliation(s)
| | - Chao Ren
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaowei Dou
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing, People's Republic of China
| | - Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Ning Dong
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hui Zhang
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yongming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
8
|
Xiang K, Shen P, Gao Z, Liu Z, Hu X, Liu B, Fu Y. Formononetin Protects LPS-Induced Mastitis Through Suppressing Inflammation and Enhancing Blood-Milk Barrier Integrity via AhR-Induced Src Inactivation. Front Immunol 2022; 13:814319. [PMID: 35185907 PMCID: PMC8850474 DOI: 10.3389/fimmu.2022.814319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Formononetin (FOR), a natural flavonoid derived from Radix Astragali, has been reported to have anti-inflammatory and anti-oxidative effects. However, its protective mechanism against mastitis is still unknown. Nuclear factor kappa-B (NF-κB) signaling pathway plays an important role in inflammation, especially mastitis. Aryl hydrocarbon receptor (AhR) is involved in inflammatory regulation and defense against diseases. We investigated the protective effect of FOR on LPS-induced mastitis in mice and the effect of Ahr and NF-κB signaling pathways on the development of mastitis. In this study, mastitis model was induced by LPS injection through the nipple duct. Protective effect of FOR on LPS-induced mastitis was assessed by FOR pretreatment. The protective mechanism of FOR against mastitis was further investigated using LPS stimulation on mouse mammary epithelial cells EpH4-Ev. The results showed that LPS-induced mammary histological injury was inhibited by FOR. FOR significantly inhibited LPS-induced MPO activity. FOR administration enhanced the integrity of blood-milk barrier. In vitro and in vivo experiments showed that FOR inhibited LPS-induced NF-κB signaling pathway activation and the production of inflammatory factors TNF-α and IL-1ß. Moreover, FOR increased the expression of tight junction protein and enhanced blood-milk barrier integrity. LPS activated AhR and Src expression. But FOR induced significant increase in AhR inhibited Src phosphorylation to exert anti-inflammatory effects. In addition, AhR antagonist CH223191 reversed the inhibition of FOR on Src expression. And the inhibition of FOR on NF-κB activation and inflammatory cytokine production were reversed by AhR antagonist CH223191. In conclusion, FOR had protective effects against LPS-induced mastitis via suppressing inflammation and enhancing blood-milk barrier integrity via AhR-induced Src inactivation.
Collapse
Affiliation(s)
- Kaihe Xiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.,Department of Clinical Veterinary Medicine, College of Agriculture, Eastern Liaoning University, Dandong, China
| | - Peng Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ziyang Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhuoyu Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bin Liu
- Cardiovascular Disease Center, First Hospital of Jilin University, Changchun, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
9
|
Huang J, Chen X, Xie A. Formononetin ameliorates IL‑13‑induced inflammation and mucus formation in human nasal epithelial cells by activating the SIRT1/Nrf2 signaling pathway. Mol Med Rep 2021; 24:832. [PMID: 34590155 PMCID: PMC8503736 DOI: 10.3892/mmr.2021.12472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/28/2021] [Indexed: 01/18/2023] Open
Abstract
Formononetin has proven to be anti‑inflammatory and able to alleviate symptoms of certain allergic diseases. The present study aimed to determine and elucidate the potential effects of formononetin in allergic rhinitis. JME/CF15 cells were pretreated with formononetin at different doses, followed by stimulation with IL‑13. Cell Counting Kit‑8 assay was performed to determine the cytotoxicity of formononetin. The expression levels of inflammation‑related proteins, histamine, IgE, TNF‑α, IL‑1β, IL‑6, granulocyte‑macrophage colony‑stimulating factor and eotaxin in IL‑13‑stimulated JME/CF15 cells were detected using ELISAs. The expression levels of phosphorylated‑NF‑κB p65, NF‑κB p65 and cyclooxygenase‑2 (Cox‑2) were analyzed using western blotting. Reverse transcription‑quantitative PCR, western blotting and immunofluorescence were performed to measure the levels of mucin 5AC oligomeric mucus/gel‑forming. Expression levels of sirtuin 1 (SIRT1) and nuclear erythroid factor 2‑related factor 2 (Nrf2) proteins were also measured using western blotting. The results of the present study revealed that formononetin exerted no cytotoxic effect on the viability of JME/CF15 cells. Following stimulation of JME/CF15 cells with IL‑13, formononetin suppressed the upregulated expression levels of proinflammatory cytokines. IL‑13‑induced formation of mucus was also attenuated by formononetin treatment. Furthermore, it was found that the SIRT1/Nrf2 signaling pathway was activated in formononetin‑treated JME/CF15 cells, whereas treatment with the SIRT1 inhibitor, EX527, reversed the effects of formononetin on IL‑13‑induced inflammation and mucus formation in JME/CF15 cells. In conclusion, the findings of the current study indicated that formononetin may activate the SIRT1/Nrf2 signaling pathway, thereby inhibiting IL‑13‑induced inflammation and mucus formation in JME/CF15 cells. These results suggested that formononetin may represent a promising agent for the treatment of allergic rhinitis.
Collapse
Affiliation(s)
- Juanjuan Huang
- Department of Traditional Chinese Medicine, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Xianfeng Chen
- Department of Traditional Chinese Medicine, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Aihua Xie
- Department of Traditional Chinese Medicine, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
10
|
Zhou C, Zhang X, Ruan CC, Cheang WS. Two methoxy derivatives of resveratrol, 3,3',4,5'-tetramethoxy-trans-stilbene and 3,4',5-trimethoxy-trans-stilbene, suppress lipopolysaccharide-induced inflammation through inactivation of MAPK and NF-κB pathways in RAW 264.7 cells. Chin Med 2021; 16:69. [PMID: 34348746 PMCID: PMC8335869 DOI: 10.1186/s13020-021-00480-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022] Open
Abstract
Background 3,3′,4,5′-tetramethoxy-trans-stilbene (3,3′,4,5′-TMS) and 3,4′,5-trimethoxy-trans-stilbene (3,4′,5-TMS) are two methoxy derivatives of resveratrol. Previous researches have proved that resveratrol and its analogues have anti-inflammatory effect through suppressing mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways. This study aims to study whether 3,3′,4,5′-TMS and 3,4′,5-TMS alleviate inflammation and the underlying mechanism. Methods RAW 264.7 macrophage cells were treated with lipopolysaccharide (LPS) to induce inflammation and pretreated with 3,3′,4,5′-TMS or 3,4′,5-TMS. Cell viability was measured with the 3-(4,5)-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) release was detected by Griess reagent. The secretions of pro-inflammatory cytokines were assessed by ELISA kits. Protein expressions of signaling molecules were determined by Western blotting. Reactive oxygen species (ROS) production was detected by fluorescence staining and malondialdehyde (MDA) assay. Results 3,3′,4,5′-TMS and 3,4′,5-TMS suppressed LPS-induced NO release and pro-inflammatory cytokines (IL-6 and TNF-α) secretions in a dose-dependent manner in RAW 264.7 cells. 3,3′,4,5′-TMS and 3,4′,5-TMS significantly down-regulated the LPS-induced expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), and partially suppressed the activation of MAPK (phosphorylation of p38, JNK, ERK), and NF-κB (phosphorylation of IKKα/β, p65 and IκBα) signaling pathways; where phosphorylation of ERK and p65 was mildly but not significantly decreased by 3,3′,4,5′-TMS. LPS-induced NF-κB/p65 nuclear translocation was inhibited by both 3,3′,4,5′-TMS and 3,4′,5-TMS. Moreover, both resveratrol derivatives decreased the ROS levels. Conclusions 3,3′,4,5′-TMS and 3,4′,5-TMS significantly suppress LPS-induced inflammation in RAW 264.7 cells through inhibition of MAPK and NF-κB signaling pathways and also provide anti-oxidative effect. This study reveals potential therapeutic applications of 3,3′,4,5′-TMS and 3,4′,5-TMS for inflammatory diseases.
Collapse
Affiliation(s)
- Chunxiu Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 5008a, Building N22, Avenida da Universidade, Taipa, Macao, SAR, China
| | - Xutao Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 5008a, Building N22, Avenida da Universidade, Taipa, Macao, SAR, China
| | - Cheng-Chao Ruan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 5008a, Building N22, Avenida da Universidade, Taipa, Macao, SAR, China.
| |
Collapse
|
11
|
Chen HJ, Pan XX, Ding LLQ, Ruan CC, Gao PJ. Cardiac Fibroblast-Specific Knockout of PGC-1α Accelerates AngII-Induced Cardiac Remodeling. Front Cardiovasc Med 2021; 8:664626. [PMID: 34222364 PMCID: PMC8242582 DOI: 10.3389/fcvm.2021.664626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022] Open
Abstract
Cardiac remodeling consisted of ventricular hypertrophy and interstitial fibrosis is the pathological process of many heart diseases. Fibroblasts as one of the major cells in the myocardium regulate the balance of the generation and degeneration of collagen, and these cells transform toward myofibroblasts in pathological state, contributing to the remodeling of the heart. Peroxisome proliferator-activated receptor-γ (PPAR-γ) coactivator-1α (PGC-1α) is vital to the function of mitochondria, which contributes to the energy production and reactive oxidative species (ROS)-scavenging activity in the heart. In this study, we found that fibroblast-specific PGC-1α KO induced cardiac remodeling especially fibrosis, and Angiotensin II (AngII) aggravated cardiac fibrosis, accompanied with a high level of oxidative stress response and inflammation.
Collapse
Affiliation(s)
- Hong-Jin Chen
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Xi Pan
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Li-Qiang Ding
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-Chao Ruan
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ping-Jin Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Hur J, Lee HG, Kim E, Won JP, Cho Y, Choi MJ, Lee H, Seo HG. Ginseng leaf extract ameliorates the survival of endotoxemic mice by inhibiting the release of high mobility group box 1. J Food Biochem 2021; 45:e13805. [PMID: 34096077 DOI: 10.1111/jfbc.13805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022]
Abstract
High mobility group box 1 (HMGB1) is a well-defined mediator involved in the pathophysiologic response to endotoxemia and sepsis. However, the mechanisms and therapeutic agents that could prevent its release are not fully elucidated. Here, the present study demonstrates that the ginseng leaf extract (GLE) regulates lipopolysaccharide (LPS)-triggered release of HMGB1 in macrophages and endotoxemic animal model. Treatment of RAW264.7 macrophages with GLE significantly inhibited the release of HMGB1 stimulated by LPS. GLE also suppressed the generation of nitric oxide (NO) and expression of inducible NO synthase (iNOS) in a dose-dependent manner. These effects of GLE were accompanied by inhibition of HMGB1 release stimulated by LPS, indicating a potential mechanism by which GLE regulates HMGB1 release through NO signaling. Furthermore, induction of suppressor of cytokine signaling 1 by GLE-mediated GLE-dependent suppression of HMGB1 release and NO/iNOS induction by inhibiting Janus kinase 2/signal transducer and activator of transcription 1 signal in RAW 264.7 cells exposed to LPS. Finally, administration of the GLE ameliorated the survival rate of LPS-injected endotoxemic mice in a NO-dependent manner. Thus, GLE may block the LPS-stimulated release of HMGB1 by regulating cellular signal networks, thereby providing a therapeutic strategy for endotoxemia as a functional food. PRACTICAL APPLICATIONS: High mobility group box 1 (HMGB1) is released into the extracellular milieu when immune cells are exposed to pathogen-related molecules such as lipopolysaccharide (LPS), in which it acts as a critical mediator of lethality in sepsis and endotoxemia. The extract of ginseng leaf, which is a part that can be easily thrown away, ameliorated the survival rate of endotoxemic mice by inhibiting HMGB1 secretion in a NO-dependent manner. Thus, this study suggests that ginseng leaf can be used as a functional food by resolving the immune responses in the pathology of endotoxemia.
Collapse
Affiliation(s)
- Jinwoo Hur
- Department of Food Science and Biotechnology of Animal Products, College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hyuk Gyoon Lee
- Department of Food Science and Biotechnology of Animal Products, College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Eunsu Kim
- Department of Food Science and Biotechnology of Animal Products, College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jun Pil Won
- Department of Food Science and Biotechnology of Animal Products, College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Youngjae Cho
- Department of Food Science and Biotechnology of Animal Products, College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Mi-Jung Choi
- Department of Food Science and Biotechnology of Animal Products, College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hwan Lee
- Health Balance R&D Center, Seoul, Republic of Korea
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Products, College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Bharti R, Chopra BS, Raut S, Khatri N. Pueraria tuberosa: A Review on Traditional Uses, Pharmacology, and Phytochemistry. Front Pharmacol 2021; 11:582506. [PMID: 33708108 PMCID: PMC7941752 DOI: 10.3389/fphar.2020.582506] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Pueraria tuberosa (Roxb. ex Willd.) DC. (Fabaceae), also known as Indian Kudzu (vidari kand), is a perennial herb distributed throughout India and other Asian countries. Traditionally, tuber and leaves of this plant have extensively been reported for nutritional and medicinal properties in Ayurveda as well as in Chinese traditional practices. The objective of the present review is to compile and update the published data on traditional uses, pharmacological potential, and phytochemistry of compounds isolated from the plant Pueraria tuberosa. P. tuberosa extracts and its purified compounds possess multiple activities such as anticancer, anticonvulsant, antidiabetic, antifertility, anti-inflammatory, antioxidant, anti-stress, antiulcerogenic, cardioprotective, hypolipidemic, hepatoprotective, immunomodulatory, nephroprotective, nootropic, neuroprotective, and wound healing. Tuber and leaf extracts of P. tuberosa contain several bioactive constituents such as puerarin, daidzein, genistein, quercetin, irisolidone, biochanin A, biochanin B, isoorientin, and mangiferin, which possess an extensive range of pharmacological activities. The extensive range of pharmacological properties of P. tuberosa provides opportunities for further investigation and presents a new approach for the treatment of ailments. Many phytochemicals have been identified and characterized from P. tuberosa; however, some of them are still unexplored, and there is no supporting data for their activities and exact mechanisms of action. Therefore, further investigations are warranted to unravel the mechanisms of action of individual constituents of this plant.
Collapse
Affiliation(s)
- Ram Bharti
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bhupinder Singh Chopra
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sachin Raut
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Neeraj Khatri
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
Hao Y, Miao J, Liu W, Peng L, Chen Y, Zhong Q. Formononetin protects against cisplatin‑induced acute kidney injury through activation of the PPARα/Nrf2/HO‑1/NQO1 pathway. Int J Mol Med 2020; 47:511-522. [PMID: 33416097 PMCID: PMC7797437 DOI: 10.3892/ijmm.2020.4805] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Acute kidney injury (AKI) is characterized by an abrupt deterioration of renal function. Formononetin (FOR) protects against cisplatin (CIS)‑induced AKI, and it has various potential pharmacological and biological effects, including anti‑inflammatory, antioxidative and anti‑apoptotic effects. The current study investigated the role of FOR in CIS‑induced AKI. Rats were treated with CIS to establish an AKI model, followed by treatment with FOR. HK‑2 cells were treated with CIS, FOR, GW6471 [a peroxisome proliferator‑activated receptor α (PPARα) antagonist], eupatilin (a PPARα agonist) and nuclear factor erythroid 2‑related factor 2 (Nrf2) small interfering RNA (siNrf2), and cell proliferation and apoptosis were determined by MTT and flow cytometry assays. The mRNA and proteins levels of PPARα, Nrf2, heme oxygenase‑1 (HO‑1) and NAD(P)H quinone dehydrogenase 1 (NQO1) were measured by reverse transcription‑quantitative PCR and western blotting. The results demonstrated that FOR attenuated the histopathological changes, the levels of blood urea nitrogen, creatinine, TNF‑α and IL‑1β, and the MDA content and MPO activity, whereas it enhanced CAT activity in the AKI rat model. Furthermore, FOR and eupatilin promoted cell viability and CAT activity, and increased the levels of PPARα, Nrf2 and HO‑1 and NQO1, but suppressed apoptosis and MPO activity, and reduced the levels of MDA, TNF‑α and IL‑1β in CIS‑treated HK‑2 cells. Notably, the aforementioned effects were reversed by GW6471 treatment or siNrf2 transfection. In conclusion, FOR protects against CIS‑induced AKI via activation of the PPARα/Nrf2/HO‑1/NQO1 pathway.
Collapse
Affiliation(s)
- Yan Hao
- Department of Nephrology, Zigong First People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Jie Miao
- Department of Imaging Medicine, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan 643000, P.R. China
| | - Wenjia Liu
- Department of Nephrology, Zigong First People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Li Peng
- Department of Nephrology, Zigong First People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yue Chen
- Department of Nephrology, Zigong First People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Qing Zhong
- Department of Nephrology, Zigong First People's Hospital, Zigong, Sichuan 643000, P.R. China
| |
Collapse
|
15
|
Baicalin Ameliorates Cognitive Impairment and Protects Microglia from LPS-Induced Neuroinflammation via the SIRT1/HMGB1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4751349. [PMID: 33029280 PMCID: PMC7527898 DOI: 10.1155/2020/4751349] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/20/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022]
Abstract
Systemic inflammation often induces neuroinflammation and disrupts neural functions, ultimately causing cognitive impairment. Furthermore, neuronal inflammation is the key cause of many neurological conditions. It is particularly important to develop effective neuroprotectants to prevent and control inflammatory brain diseases. Baicalin (BAI) has a wide variety of potent neuroprotective and cognitive enhancement properties in various models of neuronal injury through antioxidation, anti-inflammation, anti-apoptosis, and stimulating neurogenesis. Nevertheless, it remains unclear whether BAI can resolve neuroinflammation and cognitive decline triggered by systemic or distant inflammatory processes. In the present study, intraperitoneal lipopolysaccharide (LPS) administration was used to establish neuroinflammation to evaluate the potential neuroprotective and anti-inflammatory effects of BAI. Here, we report that BAI activated silent information regulator 1 (SIRT1) to deacetylate high-mobility group box 1 (HMGB1) protein in response to acute LPS-induced neuroinflammation and cognitive deficits. Furthermore, we demonstrated the anti-inflammatory and cognitive enhancement effects and the underlying molecular mechanisms of BAI in modulating microglial activation and systemic cytokine production, including tumor necrosis factor- (TNF-) α and interleukin- (IL-) 1β, after LPS exposure in mice and in the microglial cell line, BV2. In the hippocampus, BAI not only reduced reactive microglia and inflammatory cytokine production but also modulated SIRT1/HMGB1 signaling in microglia. Interestingly, pretreatment with SIRT1 inhibitor EX-527 abolished the beneficial effects of BAI against LPS exposure. Specifically, BAI treatment inhibited HMGB1 release via the SIRT1/HMGB1 pathway and reduced the nuclear translocation of HMGB1 in LPS-induced BV2 cells. These effects were reversed in BV2 cells by silencing endogenous SIRT1. Taken together, these findings indicated that BAI reduced microglia-associated neuroinflammation and improved acute neurocognitive deficits in LPS-induced mice via SIRT1-dependent downregulation of HMGB1, suggesting a possible novel protection against acute neurobehavioral deficits, such as delayed neurocognitive recovery after anesthesia and surgery challenges.
Collapse
|
16
|
Zhang D, Li B, Li B, Tang Y. Regulation of left atrial fibrosis induced by mitral regurgitation by SIRT1. Sci Rep 2020; 10:7278. [PMID: 32350389 PMCID: PMC7190846 DOI: 10.1038/s41598-020-64308-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/10/2020] [Indexed: 11/09/2022] Open
Abstract
SIRT1 (silent information regulator 1) is a histone deacetylase. It can sense the energy level in cells and delay cell senescence, leading to resistance to external stress and improving metabolism. Mitral regurgitation (MR) is a common disease in cardiac surgery. However, there are no previous studies on SIRT1 and left atrial fibrosis caused by MR. In this study, we aimed to explore the regulatory effect of SIRT1 on left atrial fibrosis induced by MR. We used Guizhou miniature pigs to establish an MR model and a sham operation model after anaesthesia induction and respiratory intubation, and these model animals were followed for 30 months after the surgery. The differential distribution and expression of SIRT1 and collagen I in the left atrium was determined by immunofluorescence and Western blotting. Furthermore, we treated NIH3T3 fibroblasts (CFs) with resveratrol and Angiotensin II (Ang II) to analyse the specific mechanism involved in the development of myocardial fibrosis. The results showed that the MR model was successfully constructed. There were 8 pigs in the MR group and 6 pigs in the control group. In both the animal experiments and the cell experiments, the expression of collagen I in the MR group was increased significantly compared to that in the control group, while the expression of SIRT1 was decreased.
Collapse
Affiliation(s)
- Dong Zhang
- Beijing Jishuitan Hospital, Department of Thoracic Surgery, Beijing, China
| | - Bo Li
- The Seventh Affiliated Hospital, Sun Yat-sen University, Department of Cardiac Surgery, Shenzhen, China
| | - Bin Li
- Animal Experimental Centre, Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Tang
- Animal Experimental Centre, Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
17
|
Wang X, Zhao L, Ajay AK, Jiao B, Zhang X, Wang C, Gao X, Yuan Z, Liu H, Liu WJ. QiDiTangShen Granules Activate Renal Nutrient-Sensing Associated Autophagy in db/db Mice. Front Physiol 2019; 10:1224. [PMID: 31632286 PMCID: PMC6779835 DOI: 10.3389/fphys.2019.01224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/09/2019] [Indexed: 12/24/2022] Open
Abstract
QiDiTangShen granules (QDTS) have been proven to reduce the proteinuria in patients with diabetic nephropathy (DN) effectively. The present study was aimed to investigate the mechanism underlying QDTS's renoprotection. The main components of QDTS were identified by ultra-high liquid chromatography-tandem mass spectrometry and pharmacological databases, among which active components were screened by oral bioavailability and drug-likeness. Their regulation on autophagy-related nutrient-sensing signal molecules (AMPK, SIRT1, and mTOR) was retrieved and analyzed through the Pubmed database. Then, db/db mice were randomly divided into three groups (model control, valsartan and QDTS), and given intragastric administration for 12 weeks, separately. Fasting and random blood glucose, body weight, urinary albumin excretion (UAE) and injury markers of liver and kidney were investigated to evaluate the effects and safety. Renal histological lesions were assessed, and the expressions of proteins related to nutrient-sensing signals and autophagy were investigated. Thirteen active components were screened from 78 components identified. Over half the components had already been reported to improve nutrient-sensing signals. QDTS significantly reduced UAE, ameliorated mesangial matrix deposition, alleviate the expression of protein and mRNA of TGF-β, α-SMA, and Col I, as well as improved the quality of mitochondria and the number of autophagic vesicles of renal tubular cells although the blood glucose was not decreased in db/db mice. Compared to the db/db group, the expression of the autophagy-inducible protein (Atg14 and Beclin1) and microtubule-associated protein 1 light chain 3-II (LC3-II) were up-regulated, autophagic substrate transporter p62 was down-regulated in QDTS group. It was also found that the expression of SIRT1 and the proportion of p-AMPK (thr172)/AMPK were increased, while the p-mTOR (ser2448)/mTOR ratio was decreased after QDTS treatment in db/db mice, which was consistent with the effect of its active ingredients on the nutrient-sensing signal pathway as reported previously. Therefore, QDTS may prevent the progression of DN by offering the anti-fibrotic effect. The renoprotection is probably attributable to the regulation of nutrient-sensing signal pathways, which activates autophagy.
Collapse
Affiliation(s)
- Xiangming Wang
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Li Zhao
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Amrendra K. Ajay
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Baihai Jiao
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Xianhui Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Health Management Center, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Gao
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Zhongyu Yuan
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hongfang Liu
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
Yao JN, Zhang XX, Zhang YZ, Li JH, Zhao DY, Gao B, Zhou HN, Gao SL, Zhang LF. Discovery and anticancer evaluation of a formononetin derivative against gastric cancer SGC7901 cells. Invest New Drugs 2019; 37:1300-1308. [PMID: 30929157 DOI: 10.1007/s10637-019-00767-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022]
Abstract
Background Gastric cancer (GC) is the second most common cause of cancer-related death worldwide. Novel anticancer drugs against gastric cancer are urgently needed. Methods Compound 10 was designed and synthesized via a molecular hybridization strategy based on the natural product formononetin. It was evaluated for their antiproliferative activity against three gastric cancer cell lines (SGC7901, MKN45 and MGC803). Results Derivative 10 displayed potently antiproliferative activity with an IC50 value of 1.07 μM against SGC7901 cells. Derivative 10 could inhibit the growth and migration against gastric cancer SGC7901 cells through the Wnt/β-Catenin and AKT/mTOR pathways. From the in vivo expremints, it could effectively inhibited SGC7901 xenograft tumor growth in vivo without significant loss of the body weight. Conclusion Derivative 10 is an novel antitumor agent with potential for further clinical applications to treat gastric cancer. Graphical abstract.
Collapse
Affiliation(s)
- Jian-Ning Yao
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xue-Xiu Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan-Zhen Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jia-Heng Li
- Reproductive Medicine Department, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dong-Yao Zhao
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bing Gao
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hai-Ning Zhou
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shi-Lin Gao
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lian-Feng Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
19
|
Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci 2019; 20:ijms20051223. [PMID: 30862067 PMCID: PMC6429360 DOI: 10.3390/ijms20051223] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Aging and various age-related diseases are associated with reductions in melatonin secretion, proinflammatory changes in the immune system, a deteriorating circadian system, and reductions in sirtuin-1 (SIRT1) activity. In non-tumor cells, several effects of melatonin are abolished by inhibiting SIRT1, indicating mediation by SIRT1. Melatonin is, in addition to its circadian and antioxidant roles, an immune stimulatory agent. However, it can act as either a pro- or anti-inflammatory regulator in a context-dependent way. Melatonin can stimulate the release of proinflammatory cytokines and other mediators, but also, under different conditions, it can suppress inflammation-promoting processes such as NO release, activation of cyclooxygenase-2, inflammasome NLRP3, gasdermin D, toll-like receptor-4 and mTOR signaling, and cytokine release by SASP (senescence-associated secretory phenotype), and amyloid-β toxicity. It also activates processes in an anti-inflammatory network, in which SIRT1 activation, upregulation of Nrf2 and downregulation of NF-κB, and release of the anti-inflammatory cytokines IL-4 and IL-10 are involved. A perhaps crucial action may be the promotion of macrophage or microglia polarization in favor of the anti-inflammatory phenotype M2. In addition, many factors of the pro- and anti-inflammatory networks are subject to regulation by microRNAs that either target mRNAs of the respective factors or upregulate them by targeting mRNAs of their inhibitor proteins.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
20
|
Formononetin attenuates kidney damage in type 2 diabetic rats. Life Sci 2019; 219:109-121. [PMID: 30641085 DOI: 10.1016/j.lfs.2019.01.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 12/21/2022]
Abstract
AIM Diabetic nephropathy is the commonly developed complication of vasculature in type 2 diabetic patients. Chronic hyperglycemia leads to nephropathy in diabetics because of the formation of excessive reactive oxygen species and advanced glycation end products which is reflected in the form of glomerulosclerosis, tubular atrophy and interstitial fibrosis. As per the various reports reduction in SIRT1 expression in kidney tissue is key factor in the development of nephropathy in diabetes because its reduction in tissue is linked with excessive formation of ROS. Formononetin is a polyphenolic compound reported for its effect on SIRT1 and ROS. MAIN METHODS Type 2 diabetes was induced in rats by diet modification using high fat diet for fifteen days prior to streptozotocin regimen (35 mg/kg, i.p.). Treatment of formononetin was started after confirmation of diabetes and continued for 16 weeks. Formononetin was administered orally to the diabetic animals at the dose of 10. 20 and 40 mg/kg. KEY FINDINGS Formononetin treatment for 16 week was able to control hyperglycemia and insulin resistance in diabetic animals. It has also been reduced triglyceride and cholesterol in blood. Formononetin treatment reduced blood concentration of creatinine, blood urea nitrogen and increased albumin concentration. Formononetin treatment also enhanced creatinine clearance in diabetic animals. Oxidative stress burden was also reduced significantly after formononetin treatment along with increased SIRT1 expression in kidney tissues of diabetic animals. SIGNIFICANCE Formononetin is a potential molecule which increases the expression of SIRT1 in kidney tissue of diabetic. Thus formononetin is an effective molecule to control nephropathy in type 2 diabetes mellitus.
Collapse
|
21
|
Hardeland R. Melatonin and inflammation-Story of a double-edged blade. J Pineal Res 2018; 65:e12525. [PMID: 30242884 DOI: 10.1111/jpi.12525] [Citation(s) in RCA: 297] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Melatonin is an immune modulator that displays both pro- and anti-inflammatory properties. Proinflammatory actions, which are well documented by many studies in isolated cells or leukocyte-derived cell lines, can be assumed to enhance the resistance against pathogens. However, they can be detrimental in autoimmune diseases. Anti-inflammatory actions are of particular medicinal interest, because they are observed in high-grade inflammation such as sepsis, ischemia/reperfusion, and brain injury, and also in low-grade inflammation during aging and in neurodegenerative diseases. The mechanisms contributing to anti-inflammatory effects are manifold and comprise various pathways of secondary signaling. These include numerous antioxidant effects, downregulation of inducible and inhibition of neuronal NO synthases, downregulation of cyclooxygenase-2, inhibition of high-mobility group box-1 signaling and toll-like receptor-4 activation, prevention of inflammasome NLRP3 activation, inhibition of NF-κB activation and upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2). These effects are also reflected by downregulation of proinflammatory and upregulation of anti-inflammatory cytokines. Proinflammatory actions of amyloid-β peptides are reduced by enhancing α-secretase and inhibition of β- and γ-secretases. A particular role in melatonin's actions seems to be associated with the upregulation of sirtuin-1 (SIRT1), which shares various effects known from melatonin and additionally interferes with the signaling by the mechanistic target of rapamycin (mTOR) and Notch, and reduces the expression of the proinflammatory lncRNA-CCL2. The conclusion on a partial mediation by SIRT1 is supported by repeatedly observed inhibitions of melatonin effects by sirtuin inhibitors or knockdown.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|