1
|
Kontopoulos DG, Sentis A, Daufresne M, Glazman N, Dell AI, Pawar S. No universal mathematical model for thermal performance curves across traits and taxonomic groups. Nat Commun 2024; 15:8855. [PMID: 39402046 PMCID: PMC11473535 DOI: 10.1038/s41467-024-53046-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/27/2024] [Indexed: 10/17/2024] Open
Abstract
In ectotherms, the performance of physiological, ecological and life-history traits universally increases with temperature to a maximum before decreasing again. Identifying the most appropriate thermal performance model for a specific trait type has broad applications, from metabolic modelling at the cellular level to forecasting the effects of climate change on population, ecosystem and disease transmission dynamics. To date, numerous mathematical models have been designed, but a thorough comparison among them is lacking. In particular, we do not know if certain models consistently outperform others and how factors such as sampling resolution and trait or organismal identity influence model performance. To fill this knowledge gap, we compile 2,739 thermal performance datasets from diverse traits and taxa, to which we fit a comprehensive set of 83 existing mathematical models. We detect remarkable variation in model performance that is not primarily driven by sampling resolution, trait type, or taxonomic information. Our results reveal a surprising lack of well-defined scenarios in which certain models are more appropriate than others. To aid researchers in selecting the appropriate set of models for any given dataset or research objective, we derive a classification of the 83 models based on the average similarity of their fits.
Collapse
Affiliation(s)
- Dimitrios -Georgios Kontopoulos
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, UK.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany.
- Senckenberg Research Institute, Frankfurt, Germany.
| | - Arnaud Sentis
- INRAE, Aix Marseille University, UMR RECOVER, Aix-en-Provence Cedex 5, France
| | - Martin Daufresne
- INRAE, Aix Marseille University, UMR RECOVER, Aix-en-Provence Cedex 5, France
| | - Natalia Glazman
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, UK
| | - Anthony I Dell
- National Great Rivers Research and Education Center, East Alton, Illinois, USA
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Samraat Pawar
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, UK
| |
Collapse
|
2
|
Garen JC, Michaletz ST. Acclimation Unifies the Scaling of Carbon Assimilation Across Climate Gradients and Levels of Organisation. Ecol Lett 2024; 27:e70004. [PMID: 39471058 DOI: 10.1111/ele.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 11/01/2024]
Abstract
The temperature dependence of carbon assimilation-from leaf photosynthesis to ecosystem productivity-is hypothesised to be driven by the kinetics of Rubisco-catalysed carboxylation and electron transport. However, photosynthetic physiology acclimates to changes in temperature, which may decouple temperature dependencies at higher levels of organisation from the acute temperature sensitivity of photosynthesis. Here, we integrate relative growth rate theory, metabolic theory and biochemical photosynthesis theory to develop a carbon budget model of plant growth that accounts for photosynthetic acclimation to temperature. We test its predictions using a novel experimental approach enabling concurrent measurement of the temperature sensitivity of acute photosynthesis, acclimated photosynthesis and growth rate. We demonstrate for the first time that photosynthetic acclimation mediates how carbon assimilation kinetics 'scale up' from leaf photosynthesis to whole-plant growth. We also find that existing models of photosynthetic acclimation are unable to predict features of growth rate responses to temperature in our system.
Collapse
Affiliation(s)
- Josef C Garen
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Affinito F, Kordas RL, Matias MG, Pawar S. Metabolic plasticity drives mismatches in physiological traits between prey and predator. Commun Biol 2024; 7:653. [PMID: 38806643 PMCID: PMC11133466 DOI: 10.1038/s42003-024-06350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Metabolic rate, the rate of energy use, underpins key ecological traits of organisms, from development and locomotion to interaction rates between individuals. In a warming world, the temperature-dependence of metabolic rate is anticipated to shift predator-prey dynamics. Yet, there is little real-world evidence on the effects of warming on trophic interactions. We measured the respiration rates of aquatic larvae of three insect species from populations experiencing a natural temperature gradient in a large-scale mesocosm experiment. Using a mechanistic model we predicted the effects of warming on these taxa's predator-prey interaction rates. We found that species-specific differences in metabolic plasticity lead to mismatches in the temperature-dependence of their relative velocities, resulting in altered predator-prey interaction rates. This study underscores the role of metabolic plasticity at the species level in modifying trophic interactions and proposes a mechanistic modelling approach that allows an efficient, high-throughput estimation of climate change threats across species pairs.
Collapse
Affiliation(s)
- Flavio Affinito
- Imperial College London Silwood Park, Buckhurst Road, Berks, SL5 7PY, UK.
- McGill University Department of Biology, 1205 Dr Penfield Ave, Montreal, QC, H3A 1B1, Canada.
- Québec Centre for Biodiversity Science, 1205 Dr Penfield Ave, Montreal, QC, H3A 1B1, Canada.
| | - Rebecca L Kordas
- Imperial College London Silwood Park, Buckhurst Road, Berks, SL5 7PY, UK
| | - Miguel G Matias
- Museo Nacional de Ciencias Naturales (CSIC), C. de José Gutiérrez Abascal, 2, Chamartín, 28006, Madrid, Spain
- Rui Nabeiro Biodiversity Chair, MED-Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Pólo da Mitra Apartado 94, 7006-554, Évora, Portugal
| | - Samraat Pawar
- Imperial College London Silwood Park, Buckhurst Road, Berks, SL5 7PY, UK
| |
Collapse
|
4
|
Michaletz ST, Garen JC. Hotter is not (always) better: Embracing unimodal scaling of biological rates with temperature. Ecol Lett 2024; 27:e14381. [PMID: 38332503 DOI: 10.1111/ele.14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/10/2024]
Abstract
Rate-temperature scaling relationships have fascinated biologists for nearly two centuries and are increasingly important in our era of global climate change. These relationships are hypothesized to originate from the temperature-dependent kinetics of rate-limiting biochemical reactions of metabolism. Several prominent theories have formalized this hypothesis using the Arrhenius model, which characterizes a monotonic temperature dependence using an activation energy E. However, the ubiquitous unimodal nature of biological temperature responses presents important theoretical, methodological, and conceptual challenges that restrict the promise for insight, prediction, and progress. Here we review the development of key hypotheses and methods for the temperature-scaling of biological rates. Using simulations, we examine the constraints of monotonic models, illustrating their sensitivity to data nuances such as temperature range and noise, and their tendency to yield variable and underestimated E, with critical consequences for climate change predictions. We also evaluate the behaviour of two prominent unimodal models when applied to incomplete and noisy datasets. We conclude with recommendations for resolving these challenges in future research, and advocate for a shift to unimodal models that better characterize the full range of biological temperature responses.
Collapse
Affiliation(s)
- Sean T Michaletz
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Josef C Garen
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Garen JC, Michaletz ST. Fast Assimilation-Temperature Response: a FAsTeR method for measuring the temperature dependence of leaf-level photosynthesis. THE NEW PHYTOLOGIST 2024; 241:1361-1372. [PMID: 37984070 DOI: 10.1111/nph.19405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
We present the Fast Assimilation-Temperature Response (FAsTeR) method, a new method for measuring plant assimilation-temperature (AT) response that reduces measurement time and increases data density compared with conventional methods. The FAsTeR method subjects plant leaves to a linearly increasing temperature ramp while taking rapid, nonequilibrium measurements of gas exchange variables. Two postprocessing steps are employed to correct measured assimilation rates for nonequilibrium effects and sensor calibration drift. Results obtained with the new method are compared with those from two conventional stepwise methods. Our new method accurately reproduces results obtained from conventional methods, reduces measurement time by a factor of c. 3.3 (from c. 90 to 27 min), and increases data density by a factor of c. 55 (from c. 10 to c. 550 observations). Simulation results demonstrate that increased data density substantially improves confidence in parameter estimates and drastically reduces the influence of noise. By improving measurement speed and data density, the FAsTeR method enables users to ask fundamentally new kinds of ecological and physiological questions, expediting data collection in short-field campaigns, and improving the representativeness of data across species in the literature.
Collapse
Affiliation(s)
- Josef C Garen
- Department of Botany and Biodiversity Research Centre, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
6
|
Godefroid M, Vandendriessche M, Todinanahary GGB, Ransquin I, Dubois P. Thermal sensitivity of black corals (Antipatharia: Hexacorallia): Comparisons between sympatric species from a thermally fluctuating site in Madagascar and between allopatric congenerics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168311. [PMID: 37926267 DOI: 10.1016/j.scitotenv.2023.168311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
This study investigated factors shaping the thermal sensitivity in antipatharians, a taxon whose members form dense aggregations in all oceans, harbouring a high biodiversity. First, we tested the thermal responses of five sympatric species (Antipathes grandis, Cupressopathes abies, Stichopathes cf. maldivensis, Cirrhipathes anguina and Cirrhipathes cf. spiralis) from the Great Reef of Toliara (Madagascar), using an acute ramping methodology. We then compared the thermal performance curves (TPCs) for oxygen consumption of these five species. Results indicated that phylogeny alone does not explain differences in thermal sensitivity (Antipathidae vs. Myriopathidae). On the contrary, morphology (branched vs. unbranched) appeared as a key factor, with unbranched species (S. cf. maldivensis, C. anguina, C. cf. spiralis) being more tolerant to thermal stress than branched ones (A. grandis and C. abies). Several hypothesis could explain these variations in thermal tolerance across morphology, such as tissue thickness, surface/volume ratio or mass-transfer efficiency. Secondly, we compared the TPC of Stichopathes from Madagascar with those previously obtained in congenerics from the Canary Islands and French Polynesia. This revealed a higher thermal tolerance in the two former than in the latter. It is proposed that it is linked to higher annual temperature variability (but not daily variability) in these two sites compared to French Polynesia. It is concluded that thermal sensitivity in antipatharians is linked to their morphology influencing their physiology and to their thermal history. Phylogeny at the family level plays a less important role in explaining differences in thermal sensitivity in antipatharians.
Collapse
Affiliation(s)
- Mathilde Godefroid
- Marine Biology Laboratory, Université Libre de Bruxelles, Av. F.D. Roosevelt 50, CP160/15, 1050 Brussels, Belgium.
| | - Mathilde Vandendriessche
- Marine Biology Laboratory, Université Libre de Bruxelles, Av. F.D. Roosevelt 50, CP160/15, 1050 Brussels, Belgium
| | - Gildas Georges Boleslas Todinanahary
- Belaza Marine Station, Institut Halieutique et des Sciences Marines (IH.SM), Université de Toliara, Rue Dr Rabesandratana HD, P.O. Box 141, 601 Toliara, Madagascar
| | - Ignace Ransquin
- Institute of Mechanics, Materials and Civil Engineering, Université Catholique de Louvain, Place du Levant 2, B-1348 Louvain-la-Neuve, Belgium
| | - Philippe Dubois
- Marine Biology Laboratory, Université Libre de Bruxelles, Av. F.D. Roosevelt 50, CP160/15, 1050 Brussels, Belgium
| |
Collapse
|
7
|
Terlau JF, Brose U, Boy T, Pawar S, Pinsky M, Hirt MR. Predicting movement speed of beetles from body size and temperature. MOVEMENT ECOLOGY 2023; 11:27. [PMID: 37194049 DOI: 10.1186/s40462-023-00389-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/06/2023] [Indexed: 05/18/2023]
Abstract
Movement facilitates and alters species interactions, the resulting food web structures, species distribution patterns, community structures and survival of populations and communities. In the light of global change, it is crucial to gain a general understanding of how movement depends on traits and environmental conditions. Although insects and notably Coleoptera represent the largest and a functionally important taxonomic group, we still know little about their general movement capacities and how they respond to warming. Here, we measured the exploratory speed of 125 individuals of eight carabid beetle species across different temperatures and body masses using automated image-based tracking. The resulting data revealed a power-law scaling relationship of average movement speed with body mass. By additionally fitting a thermal performance curve to the data, we accounted for the unimodal temperature response of movement speed. Thereby, we yielded a general allometric and thermodynamic equation to predict exploratory speed from temperature and body mass. This equation predicting temperature-dependent movement speed can be incorporated into modeling approaches to predict trophic interactions or spatial movement patterns. Overall, these findings will help improve our understanding of how temperature effects on movement cascade from small to large spatial scales as well as from individual to population fitness and survival across communities.
Collapse
Affiliation(s)
- Jördis F Terlau
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, Germany.
| | - Ulrich Brose
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, Germany
| | - Thomas Boy
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, Germany
| | - Samraat Pawar
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | - Malin Pinsky
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Myriam R Hirt
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
8
|
Garen JC, Branch HA, Borrego I, Blonder B, Stinziano JR, Michaletz ST. Gas exchange analysers exhibit large measurement error driven by internal thermal gradients. THE NEW PHYTOLOGIST 2022; 236:369-384. [PMID: 35762843 DOI: 10.1111/nph.18347] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Portable gas exchange analysers provide critical data for understanding plant-atmosphere carbon and water fluxes, and for parameterising Earth system models that forecast climate change effects and feedbacks. We characterised temperature measurement errors in the Li-Cor LI-6400XT and LI-6800, and estimated downstream errors in derived quantities, including stomatal conductance (gsw ) and leaf intercellular CO2 concentration (Ci ). The LI-6400XT exhibited air temperature errors (differences between reported air temperature and air temperature measured near the leaf) up to 7.2°C, leaf temperature errors up to 5.3°C, and relative errors in gsw and Ci that increased as temperatures departed from ambient. This caused errors in leaf-to-air temperature relationships, assimilation-temperature curves and CO2 response curves. Temperature dependencies of maximum Rubisco carboxylation rate (Vcmax ) and maximum RuBP regeneration rate (Jmax ) showed errors of 12% and 35%, respectively. These errors are likely to be idiosyncratic and may differ among machines and environmental conditions. The LI-6800 exhibited much smaller errors. Earth system model predictions may be erroneous, as much of their parametrisation data were measured on the LI-6400XT system, depending on the methods used. We make recommendations for minimising errors and correcting data in the LI-6400XT. We also recommend transitioning to the LI-6800 for future data collection.
Collapse
Affiliation(s)
- Josef C Garen
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Haley A Branch
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Isaac Borrego
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Benjamin Blonder
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| | | | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
9
|
Padfield D, O'Sullivan H, Pawar S. rTPC
and
nls.multstart
: A new pipeline to fit thermal performance curves in
r. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13585] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Daniel Padfield
- College of Life and Environmental Sciences Environment and Sustainability Institute University of Exeter Cornwall UK
| | | | - Samraat Pawar
- Department of Life Sciences Imperial College London Berkshire UK
| |
Collapse
|
10
|
Abstract
Temperature is a critical abiotic factor shaping the distribution and abundance of species, but the mechanisms that underpin organismal thermal limits remain poorly understood. One possible mechanism underlying these limits is the failure of mitochondrial processes, as mitochondria play a crucial role in animals as the primary site of ATP production. Conventional measures of mitochondrial performance suggest that these organelles can function at temperatures much higher than those that limit whole-organism function, suggesting that they are unlikely to set organismal thermal limits. However, this conclusion is challenged by recent data connecting sequence variation in mitochondrial genes to whole-organism thermal tolerance. Here, we review the current state of knowledge of mitochondrial responses to thermal extremes and ask whether they are consistent with a role for mitochondrial function in shaping whole-organism thermal limits. The available data are fragmentary, but it is possible to draw some conclusions. There is little evidence that failure of maximal mitochondrial oxidative capacity as assessed in vitro sets thermal limits, but there is some evidence to suggest that temperature effects on ATP synthetic capacity may be important. Several studies suggest that loss of mitochondrial coupling is associated with the thermal limits for organismal growth, although this needs to be rigorously tested. Most studies have utilized isolated mitochondrial preparations to assess the effects of temperature on these organelles, and there remain many untapped opportunities to address these questions using preparations that retain more of their biological context to better connect these subcellular processes with whole-organism thermal limits.
Collapse
Affiliation(s)
- Dillon J Chung
- National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
11
|
Kontopoulos D, Smith TP, Barraclough TG, Pawar S. Adaptive evolution shapes the present-day distribution of the thermal sensitivity of population growth rate. PLoS Biol 2020; 18:e3000894. [PMID: 33064736 PMCID: PMC7592915 DOI: 10.1371/journal.pbio.3000894] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 10/28/2020] [Accepted: 09/14/2020] [Indexed: 12/23/2022] Open
Abstract
Developing a thorough understanding of how ectotherm physiology adapts to different thermal environments is of crucial importance, especially in the face of global climate change. A key aspect of an organism's thermal performance curve (TPC)-the relationship between fitness-related trait performance and temperature-is its thermal sensitivity, i.e., the rate at which trait values increase with temperature within its typically experienced thermal range. For a given trait, the distribution of thermal sensitivities across species, often quantified as "activation energy" values, is typically right-skewed. Currently, the mechanisms that generate this distribution are unclear, with considerable debate about the role of thermodynamic constraints versus adaptive evolution. Here, using a phylogenetic comparative approach, we study the evolution of the thermal sensitivity of population growth rate across phytoplankton (Cyanobacteria and eukaryotic microalgae) and prokaryotes (bacteria and archaea), 2 microbial groups that play a major role in the global carbon cycle. We find that thermal sensitivity across these groups is moderately phylogenetically heritable, and that its distribution is shaped by repeated evolutionary convergence throughout its parameter space. More precisely, we detect bursts of adaptive evolution in thermal sensitivity, increasing the amount of overlap among its distributions in different clades. We obtain qualitatively similar results from evolutionary analyses of the thermal sensitivities of 2 physiological rates underlying growth rate: net photosynthesis and respiration of plants. Furthermore, we find that these episodes of evolutionary convergence are consistent with 2 opposing forces: decrease in thermal sensitivity due to environmental fluctuations and increase due to adaptation to stable environments. Overall, our results indicate that adaptation can lead to large and relatively rapid shifts in thermal sensitivity, especially in microbes for which rapid evolution can occur at short timescales. Thus, more attention needs to be paid to elucidating the implications of rapid evolution in organismal thermal sensitivity for ecosystem functioning.
Collapse
Affiliation(s)
- Dimitrios—Georgios Kontopoulos
- Science and Solutions for a Changing Planet DTP, Imperial College London, London, United Kingdom
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, United Kingdom
| | - Thomas P. Smith
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, United Kingdom
| | - Timothy G. Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, United Kingdom
- Department of Zoology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Samraat Pawar
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, United Kingdom
| |
Collapse
|
12
|
Kontopoulos D‐G, van Sebille E, Lange M, Yvon‐Durocher G, Barraclough TG, Pawar S. Phytoplankton thermal responses adapt in the absence of hard thermodynamic constraints. Evolution 2020; 74:775-790. [PMID: 32118294 PMCID: PMC7384082 DOI: 10.1111/evo.13946] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 12/16/2022]
Abstract
To better predict how populations and communities respond to climatic temperature variation, it is necessary to understand how the shape of the response of fitness-related rates to temperature evolves (the thermal performance curve). Currently, there is disagreement about the extent to which the evolution of thermal performance curves is constrained. One school of thought has argued for the prevalence of thermodynamic constraints through enzyme kinetics, whereas another argues that adaptation can-at least partly-overcome such constraints. To shed further light on this debate, we perform a phylogenetic meta-analysis of the thermal performance curves of growth rate of phytoplankton-a globally important functional group-controlling for environmental effects (habitat type and thermal regime). We find that thermodynamic constraints have a minor influence on the shape of the curve. In particular, we detect a very weak increase of maximum performance with the temperature at which the curve peaks, suggesting a weak "hotter-is-better" constraint. Also, instead of a constant thermal sensitivity of growth across species, as might be expected from strong constraints, we find that all aspects of the thermal performance curve evolve along the phylogeny. Our results suggest that phytoplankton thermal performance curves adapt to thermal environments largely in the absence of hard thermodynamic constraints.
Collapse
Affiliation(s)
- Dimitrios ‐ Georgios Kontopoulos
- Science and Solutions for a Changing Planet DTPImperial College LondonLondonSW7 2AZUK
- Department of Life SciencesImperial College LondonSilwood ParkAscotBerkshireSL5 7PYUK
| | - Erik van Sebille
- Grantham InstituteImperial College LondonLondonSW7 2AZUK
- Institute for Marine and Atmospheric Research UtrechtUtrecht UniversityUtrecht3584 CCthe Netherlands
| | - Michael Lange
- Department of Earth Science and EngineeringImperial College LondonLondonSW7 2AZUK
| | - Gabriel Yvon‐Durocher
- Environment and Sustainability InstituteUniversity of ExeterPenrynCornwallTR10 9EZUK
| | | | - Samraat Pawar
- Department of Life SciencesImperial College LondonSilwood ParkAscotBerkshireSL5 7PYUK
| |
Collapse
|
13
|
García-Carreras B, Sal S, Padfield D, Kontopoulos DG, Bestion E, Schaum CE, Yvon-Durocher G, Pawar S. Role of carbon allocation efficiency in the temperature dependence of autotroph growth rates. Proc Natl Acad Sci U S A 2018; 115:E7361-E7368. [PMID: 30021849 PMCID: PMC6077706 DOI: 10.1073/pnas.1800222115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Relating the temperature dependence of photosynthetic biomass production to underlying metabolic rates in autotrophs is crucial for predicting the effects of climatic temperature fluctuations on the carbon balance of ecosystems. We present a mathematical model that links thermal performance curves (TPCs) of photosynthesis, respiration, and carbon allocation efficiency to the exponential growth rate of a population of photosynthetic autotroph cells. Using experiments with the green alga, Chlorella vulgaris, we apply the model to show that the temperature dependence of carbon allocation efficiency is key to understanding responses of growth rates to warming at both ecological and longer-term evolutionary timescales. Finally, we assemble a dataset of multiple terrestrial and aquatic autotroph species to show that the effects of temperature-dependent carbon allocation efficiency on potential growth rate TPCs are expected to be consistent across taxa. In particular, both the thermal sensitivity and the optimal temperature of growth rates are expected to change significantly due to temperature dependence of carbon allocation efficiency alone. Our study provides a foundation for understanding how the temperature dependence of carbon allocation determines how population growth rates respond to temperature.
Collapse
Affiliation(s)
- Bernardo García-Carreras
- Department of Life Sciences, Imperial College London, Ascot, Berkshire, SL5 7PY, United Kingdom;
| | - Sofía Sal
- Department of Life Sciences, Imperial College London, Ascot, Berkshire, SL5 7PY, United Kingdom
| | - Daniel Padfield
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, United Kingdom
| | | | - Elvire Bestion
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, United Kingdom
| | - C-Elisa Schaum
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, United Kingdom
| | - Gabriel Yvon-Durocher
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, United Kingdom
| | - Samrāt Pawar
- Department of Life Sciences, Imperial College London, Ascot, Berkshire, SL5 7PY, United Kingdom;
| |
Collapse
|
14
|
Zhao CC, Qu GX, Yan SG, Cai XZ. Squeaking in fourth-generation ceramic-on-ceramic total hip replacement and the relationship with prosthesis brands: meta-analysis and systematic review. J Orthop Surg Res 2018; 13:133. [PMID: 29859126 PMCID: PMC5984797 DOI: 10.1186/s13018-018-0841-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023] Open
Abstract
Background Postoperative squeaking in patients who applied the fourth-generation ceramic bearing in primary hip replacement has not been reported systematically; we aim to study the squeaking incidence in the fourth-generation ceramic bearing and related risk factors for squeaking, and we also attempt to explore the relationship between squeaking and prosthetic brands. Methods The PubMed, Embase, and Cochrane library were searched, and 14 articles were finally included. Patients’ demographic data, surgical-related information, and prosthesis data were extracted. The occurrence rate of squeaking was calculated by meta-analysis, and subgroup analysis was performed based on prosthetic brands and follow-up time. Regression analysis was further applied to investigate the relationship between various risk factors and squeaking. Results The squeaking incidence in patients with the fourth-generation ceramic bearing was 3%. Age, gender, body mass index, and abduction and anteversion angles of acetabular cup might have no influence on squeaking. The squeaking incidence was significantly high with the presence of Delta Motion cup (DePuy, Warsaw, Indiana) and Secure-Fit stem (Stryker, Kalamazoo, MI), and the overall incidence of DePuy femoral stem was relatively small except for the Summit femoral stem. And there was no significant difference of squeaking incidence between less than 5-year and more than or equal to 5-year follow-up subgroups. Conclusions In our study, squeaking in the fourth-generation ceramic bearing occurred at a rate of 3%; occurrence rate was high when the Delta Motion cup was applied. We hope for more relevant researches to focus on this issue. Electronic supplementary material The online version of this article (10.1186/s13018-018-0841-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chen-Chen Zhao
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88, Hangzhou, 310009, China.,Orthopaedic Research Laboratory, Zhejiang University, Jiefang Road 88, Hangzhou, China
| | - Guo-Xin Qu
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88, Hangzhou, 310009, China.,Orthopaedic Research Laboratory, Zhejiang University, Jiefang Road 88, Hangzhou, China
| | - Shi-Gui Yan
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88, Hangzhou, 310009, China.,Orthopaedic Research Laboratory, Zhejiang University, Jiefang Road 88, Hangzhou, China
| | - Xun-Zi Cai
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88, Hangzhou, 310009, China. .,Orthopaedic Research Laboratory, Zhejiang University, Jiefang Road 88, Hangzhou, China.
| |
Collapse
|