1
|
Sawaswong V, Chanchaem P, Kemthong T, Warit S, Chaiprasert A, Malaivijitnond S, Payungporn S. Alteration of gut microbiota in wild-borne long-tailed macaques after 1-year being housed in hygienic captivity. Sci Rep 2023; 13:5842. [PMID: 37037869 PMCID: PMC10085984 DOI: 10.1038/s41598-023-33163-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023] Open
Abstract
The wild-born long-tailed macaques (Macaca fascicularis) were recently recruited and used as breeders for the National Primate Research Center of Thailand, Chulalongkorn University (NPRCT-CU), and changes in their in-depth gut microbiota profiles were investigated. The Oxford Nanopore Technology (ONT) was used to explore full-length 16S rDNA sequences of gut microbiota in animals once captured in their natural habitat and 1-year following translocation and housing in a hygienic environment at NPRCT-CU. Our findings show that the gut microbiota of macaques after 1 year of hygienic housing and programmed diets feeding was altered and reshaped. The prevalent gut bacteria such as Prevotella copri and Faecalibacterium prausnitzii were enriched after translocation, causing the lower alpha diversity. The correlation analysis revealed that Prevotella copri, Phascolarctobacterium succinatutens, and Prevotella stercorea, showed a positive correlation with each other. Significantly enriched pathways in the macaques after translocation included biosynthesis of essential amino acids, fatty acids, polyamine and butanoate. The effects of microbiota change could help macaques to harvest the energy from programmed diets and adapt their gut metabolism. The novel probiotics and microbiota engineering approach could be further developed based on the current findings and should be helpful for captive animal health care management.
Collapse
Affiliation(s)
- Vorthon Sawaswong
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
- Nucleic Acid Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
| | - Taratorn Kemthong
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand
| | - Saradee Warit
- Industrial Tuberculosis Team, Industrial Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Angkana Chaiprasert
- Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Johnson AL, Keesler RI, Lewis AD, Reader JR, Laing ST. Common and Not-So-Common Pathologic Findings of the Gastrointestinal Tract of Rhesus and Cynomolgus Macaques. Toxicol Pathol 2022; 50:638-659. [PMID: 35363082 PMCID: PMC9308647 DOI: 10.1177/01926233221084634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rhesus and cynomolgus macaques are the most frequently used nonhuman primate (NHP) species for biomedical research and toxicology studies of novel therapeutics. In recent years, there has been a shortage of laboratory macaques due to a variety of competing factors. This was most recently exacerbated by the surge in NHP research required to address the severe acute respiratory syndrome (SARS)-coronavirus 2 pandemic. Continued support of these important studies has required the use of more varied cohorts of macaques, including animals with different origins, increased exposure to naturally occurring pathogens, and a wider age range. Diarrhea and diseases of the gastrointestinal tract are the most frequently occurring spontaneous findings in macaques of all origins and ages. The purpose of this review is to alert pathologists and scientists involved in NHP research to these findings and their impact on animal health and study endpoints, which may otherwise confound the interpretation of data generated using macaques.
Collapse
Affiliation(s)
| | | | - Anne D Lewis
- Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - J Rachel Reader
- California National Primate Research Center, Davis, California, USA
| | | |
Collapse
|
3
|
Koo BS, Baek SH, Kim G, Hwang EH, Oh H, Son Y, Lim KS, Kang P, Lee HY, Jeong KJ, Kim YH, Villinger F, Hong JJ. Idiopathic chronic diarrhea associated with dysbiosis in a captive cynomolgus macaque (Macaca fascicularis). J Med Primatol 2019; 49:56-59. [PMID: 31642533 DOI: 10.1111/jmp.12447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/29/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
Abstract
Chronic inflammatory enteric diseases occur commonly in humans and animals, especially in captive bred macaques. However, information about the etiology of idiopathic chronic inflammatory diarrhea in cynomolgus monkeys is limited. In this paper, we reported the unusual case of idiopathic chronic diarrhea in a captive cynomolgus monkey based on microbial, imaging, and microbiome examinations.
Collapse
Affiliation(s)
- Bon-Sang Koo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Korea
| | - Seung Ho Baek
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Korea
| | - Green Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Korea
| | - Eun-Ha Hwang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Korea
| | - Hanseul Oh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Korea
| | - Yeonghoon Son
- Primate Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Korea
| | - Philyong Kang
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Korea
| | - Hwal-Yong Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Korea
| | - Kang-Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Korea
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana Lafayette, Lafayette, Louisiana
| | - Jung-Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Korea
| |
Collapse
|
4
|
Clarke EL, Taylor LJ, Zhao C, Connell A, Lee JJ, Fett B, Bushman FD, Bittinger K. Sunbeam: an extensible pipeline for analyzing metagenomic sequencing experiments. MICROBIOME 2019; 7:46. [PMID: 30902113 PMCID: PMC6429786 DOI: 10.1186/s40168-019-0658-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 03/11/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Analysis of mixed microbial communities using metagenomic sequencing experiments requires multiple preprocessing and analytical steps to interpret the microbial and genetic composition of samples. Analytical steps include quality control, adapter trimming, host decontamination, metagenomic classification, read assembly, and alignment to reference genomes. RESULTS We present a modular and user-extensible pipeline called Sunbeam that performs these steps in a consistent and reproducible fashion. It can be installed in a single step, does not require administrative access to the host computer system, and can work with most cluster computing frameworks. We also introduce Komplexity, a software tool to eliminate potentially problematic, low-complexity nucleotide sequences from metagenomic data. A unique component of the Sunbeam pipeline is an easy-to-use extension framework that enables users to add custom processing or analysis steps directly to the workflow. The pipeline and its extension framework are well documented, in routine use, and regularly updated. CONCLUSIONS Sunbeam provides a foundation to build more in-depth analyses and to enable comparisons in metagenomic sequencing experiments by removing problematic, low-complexity reads and standardizing post-processing and analytical steps. Sunbeam is written in Python using the Snakemake workflow management software and is freely available at github.com/sunbeam-labs/sunbeam under the GPLv3.
Collapse
Affiliation(s)
- Erik L. Clarke
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Louis J. Taylor
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Chunyu Zhao
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Andrew Connell
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Jung-Jin Lee
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Bryton Fett
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| |
Collapse
|