1
|
Yang M, Wang Y, Ding W, Li H, Zhang A. Predicting habitat suitability for the soybean pod borer Leguminivora glycinivorella (Matsumura) using optimized MaxEnt models with multiple variables. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1796-1808. [PMID: 39120055 DOI: 10.1093/jee/toae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
The soybean pod borer Leguminivora glycinivorella (Matsumura) is one of the most important soybean pests and often causes serious damage to Glycine max (L.) Merr., a leading source of dietary protein and oil in animal feed. However, the potential distribution patterns of this economically important pest and its driving factors require further investigation. Here, we used the optimized MaxEnt model to predict the potential distribution of this pest with multiple variables associated with climate, land use, and host plant, at its recorded range and a globe scale. Based on 4 variable combinations, the results show that the current suitable habitats of L. glycinivorella are primarily distributed in most of China, the Korean Peninsula, and Japan. Whereas no suitable area is present in other continents. In future projections, the suitable region shows a slight northward expansion compared with the result predicted with current climatic conditions, and the suitable areas of almost all future projections were stable in size. Among the 9 bioclimatic factors, BIO03 (isothermality) consistently highly contributes to the predictions, indicating that temperature may be a key factor influencing the habitat distribution of L. glycinivorella. Comparative analyses of projections further show that non-climatic factors are informative in the modeling as routinely used bioclimate variables. The spatio-temporal distribution patterns of suitable habitats and the regulatory factors predicted in this study could provide important guidance for L. glycinivorella management.
Collapse
Affiliation(s)
- Mingsheng Yang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, P. R. China
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou, P. R. China
| | - Ying Wang
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
| | - Weili Ding
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, P. R. China
| | - Houhun Li
- College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Aibing Zhang
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
| |
Collapse
|
2
|
Wang Y, Yao Y, Zhang Y, Qian X, Guo D, Coates BS. A chromosome-level genome assembly of the soybean pod borer: insights into larval transcriptional response to transgenic soybean expressing the pesticidal Cry1Ac protein. BMC Genomics 2024; 25:355. [PMID: 38594617 PMCID: PMC11005160 DOI: 10.1186/s12864-024-10216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Genetically modified (GM) crop plants with transgenic expression of Bacillus thuringiensis (Bt) pesticidal proteins are used to manage feeding damage by pest insects. The durability of this technology is threatened by the selection for resistance in pest populations. The molecular mechanism(s) involved in insect physiological response or evolution of resistance to Bt is not fully understood. RESULTS To investigate the response of a susceptible target insect to Bt, the soybean pod borer, Leguminivora glycinivorella (Lepidoptera: Tortricidae), was exposed to soybean, Glycine max, expressing Cry1Ac pesticidal protein or the non-transgenic parental cultivar. Assessment of larval changes in gene expression was facilitated by a third-generation sequenced and scaffolded chromosome-level assembly of the L. glycinivorella genome (657.4 Mb; 27 autosomes + Z chromosome), and subsequent structural annotation of 18,197 RefSeq gene models encoding 23,735 putative mRNA transcripts. Exposure of L. glycinivorella larvae to transgenic Cry1Ac G. max resulted in prediction of significant differential gene expression for 204 gene models (64 up- and 140 down-regulated) and differential splicing among isoforms for 10 genes compared to unexposed cohorts. Differentially expressed genes (DEGs) included putative peritrophic membrane constituents, orthologs of Bt receptor-encoding genes previously linked or associated with Bt resistance, and those involved in stress responses. Putative functional Gene Ontology (GO) annotations assigned to DEGs were significantly enriched for 36 categories at GO level 2, respectively. Most significantly enriched cellular component (CC), biological process (BP), and molecular function (MF) categories corresponded to vacuolar and microbody, transport and metabolic processes, and binding and reductase activities. The DEGs in enriched GO categories were biased for those that were down-regulated (≥ 0.783), with only MF categories GTPase and iron binding activities were bias for up-regulation genes. CONCLUSIONS This study provides insights into pathways and processes involved larval response to Bt intoxication, which may inform future unbiased investigations into mechanisms of resistance that show no evidence of alteration in midgut receptors.
Collapse
Affiliation(s)
- Yangzhou Wang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yao Yao
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yunyue Zhang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xueyan Qian
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Dongquan Guo
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Brad S Coates
- United States Department of Agriculture, Agricultural Research Service, Corn Insects & Crop Genetics Research Unit, 532 Science II, 2310 Pammel Dr., Ames, IA, 50011, USA.
| |
Collapse
|
3
|
Fei H, Cui J, Zhu S, Xia Y, Xing Y, Gao Y, Shi S. Integrative Analyses of Transcriptomics and Metabolomics in Immune Response of Leguminivora glycinivorella Mats to Beauveria bassiana Infection. INSECTS 2024; 15:126. [PMID: 38392545 PMCID: PMC10889468 DOI: 10.3390/insects15020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
This study utilized Beauveria bassiana to infect Leguminivora glycinivorella, analyzed the effects on the transcriptome and metabolome, and further investigated the antibacterial function of L. glycinivorella. We performed transcriptome and metabolome sequencing on the L. glycinivorella infected with B. bassiana and its control groups, and performed a joint analysis of transcriptome and metabolome results. Upon screening, 4560 differentially expressed genes were obtained in the transcriptome and 71 differentially expressed metabolites were obtained in the metabolome. On this basis, further integration of the use of transcriptomics and metabonomics combined an analysis of common enrichments of pathways of which there were three. They were glutathione S-transferase (GSTs) genes, heat shock protein (HSP) genes, and cytochrome P450 (CYP450) genes. These three pathways regulate the transport proteins, such as ppars, and thus affect the digestion and absorption of sugars and fats, thus regulating the development of pests. The above conclusion indicates that B. bassiana can affect the sugar metabolism, lipid metabolism, and amino acid metabolism pathways of L. glycinivorella, and can consume the necessary energy, protein, and lipids of L. glycinivorella. The research on the immune response mechanism of pests against pathogens can provide an important scientific basis and target for the development of immunosuppressants. This study laid an information foundation for the application of entomogenous fungi to control soybean borer at the molecular level.
Collapse
Affiliation(s)
- Hongqiang Fei
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Jilin City Academy of Agricultural Sciences, Jilin 132101, China
| | - Juan Cui
- Agriculture Science and Technology College, Jilin 132109, China
| | - Shiyu Zhu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Ye Xia
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yichang Xing
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yu Gao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Shusen Shi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
4
|
Chen L, Song B, Yu C, Zhang J, Zhang J, Bi R, Li X, Ren X, Zhu Y, Yao D, Song Y, Yang S, Zhao R. Identifying Soybean Pod Borer ( Leguminivora glycinivorella) Resistance QTLs and the Mechanism of Induced Defense Using Linkage Mapping and RNA-Seq Analysis. Int J Mol Sci 2022; 23:ijms231810910. [PMID: 36142822 PMCID: PMC9504297 DOI: 10.3390/ijms231810910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The soybean pod borer (Leguminivora glycinivorella) (SPB) is a major cause of soybean (Glycine max L.) yield losses in northeast Asia, thus it is desirable to elucidate the resistance mechanisms involved in soybean response to the SPB. However, few studies have mapped SPB-resistant quantitative trait loci (QTLs) and deciphered the response mechanism in soybean. Here, we selected two soybean varieties, JY93 (SPB-resistant) and K6 (SPB-sensitive), to construct F2 and F2:3 populations for QTL mapping and collected pod shells before and after SPB larvae chewed on the two parents to perform RNA-Seq, which can identify stable QTLs and explore the response mechanism of soybean to the SPB. The results show that four QTLs underlying SPB damage to seeds were detected on chromosomes 4, 9, 13, and 15. Among them, qESP-9-1 was scanned in all environments, hence it can be considered a stable QTL. All QTLs explained 0.79 to 6.09% of the phenotypic variation. Meanwhile, 2298 and 3509 DEGs were identified for JY93 and K6, respectively, after the SPB attack, and most of these genes were upregulated. Gene Ontology enrichment results indicated that the SPB-induced and differently expressed genes in both parents are involved in biological processes such as wound response, signal transduction, immune response, and phytohormone pathways. Interestingly, secondary metabolic processes such as flavonoid synthesis were only significantly enriched in the upregulated genes of JY93 after SPB chewing compared with K6. Finally, we identified 18 candidate genes related to soybean pod borer resistance through the integration of QTL mapping and RNA-Seq analysis. Seven of these genes had similar expression patterns to the mapping parents in four additional soybean germplasm after feeding by the SPB. These results provide additional knowledge of the early response and induced defense mechanisms against the SPB in soybean, which could help in breeding SPB-resistant soybean accessions.
Collapse
Affiliation(s)
- Liangyu Chen
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Baixing Song
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Cheng Yu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Jun Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
- National Crop Variety Approval and Characteristic Identification Station, Jilin Agricultural University, Changchun 130118, China
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Department Biology, University of British Columbia-Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Rui Bi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Xueying Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Xiaobo Ren
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Yanyu Zhu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Dan Yao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Yang Song
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Songnan Yang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (S.Y.); (R.Z.)
| | - Rengui Zhao
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (S.Y.); (R.Z.)
| |
Collapse
|
5
|
Li S, Hao Z, Xu H, Gao Y, Zhang M, Liang J, Dang X. Silencing β-1,3-glucan binding protein enhances the susceptibility of Plutella xylostella to entomopathogenic fungus Isaria cicadae. PEST MANAGEMENT SCIENCE 2022; 78:3117-3127. [PMID: 35442542 DOI: 10.1002/ps.6938] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The diamondback moth, Plutella xylostella is a notorious pest of brassicaceae crops globally and has developed serious resistance to insecticide. Insects primarily rely on their innate immunity to defense against various pathogens. In this study, we investigated the immunological functions of a β-1,3-glucan binding protein from P. xylostella (PxβGBP) and evaluated its potential for biocontrolling P. xylostella. RESULTS The open reading frame of PxβGBP is 1422 bp encoding 473 amino acids residues. PxβGBP contained a CBM39 domain, a PAC domain and a GH16 domain and shared evolutionary conservation with other lepidoptera βGRPs. PxβGBP was strongly expressed in the third instar larvae and fat body. PxβGBP transcript levels increased significantly after the challenge with microbes, including Isaria cicadae, Escherichia coli and Staphylococcus aureus. PxβGBP was identified in P. xylostella larvae challenged by I cicadae, but not in the naïve insects. Recombinant PxβGBP can directly bind fungal and bacterial cells, and also agglutinate the cells of I cicadae, S. aureus and E coli in a zinc-dependent manner. Knockdown of PxβGBP via RNA interference significantly down-regulated the expression of antimicrobial peptide gene gloverin, and enhanced the susceptibility of P. xylostella to I. cicadae infection, leading to high mortality. CONCLUSION These results indicated that PxβGBP plays an important role in the immune response of P. xylostella against I. cicadae infection, and could serve as a potential novel target for pest control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuangshuang Li
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zhongping Hao
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Huihui Xu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yan Gao
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Mingyu Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Jian Liang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiangli Dang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Feng K, Li W, Tang X, Luo J, Tang F. Termicin silencing enhances the toxicity of Serratia marcescens Bizio (SM1) to Odontotermes formosanus (Shiraki). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 185:105120. [PMID: 35772836 DOI: 10.1016/j.pestbp.2022.105120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/06/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Termites are often exposed to a variety of pathogens during their life cycle, which has led to the development of an innate immune system to resist these pathogens. Antimicrobial peptides (AMPs) play a crucial role in the innate immune system in insects. However, clear information on AMPs in termites has not been obtained. Therefore, exploring the function of AMPs in the subterranean termite Odontotermes formosanus (Shiraki) can lead to the development of novel termite control strategies that integrate RNA interference (RNAi) and pathogens. Here we first obtained two Oftermicins from O. formosanus and observed that the expression of these Oftermicin genes was significantly upregulated at the mRNA level after treatment with lipopolysaccharide (LPS) or Serratia marcescens Bizio (SM1). Interestingly, the expression of these Oftermicins increased not only in the donor termites but also in the recipient termites through transmission experiments. Bioassay experiments showed that the mortality of O. formosanus treated with SM1 after RNAi was significantly higher than that of other groups. In summary, dsOftermicins are important immunosuppressants for termite control and Oftermicins are optimal targets for termite control based on the combined use of RNAi and pathogens.
Collapse
Affiliation(s)
- Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Wei Li
- College of Life Sciences, Yangtze University, Jingmi Road 266, Jingzhou 434025, Hubei Province, People's Republic of China
| | - Xinyi Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jian Luo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
7
|
Belousova I, Pavlushin S, Subbotina A, Rudneva N, Martemyanov V. Sex Specificity in Innate Immunity of Insect Larvae. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6449196. [PMID: 34865031 PMCID: PMC8644026 DOI: 10.1093/jisesa/ieab097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 06/13/2023]
Abstract
The innate immunity of insects has been widely studied. Although the effect of sex on insect immunity has been extensively discussed, differences in immunity between the sexes of larvae insects remain largely unstudied. Studying larval sex differences in immunity may provide valuable information about the mechanisms underlying the insect immune system, which, in turn, can be valuable for the development and improvement of pest management. Here we compared the antibacterial activity in both the midgut tissue and cell-free hemolymph of Lymantria dispar L. (Lepidoptera: Erebidae) females and males at the larval stage without and after a challenge by entomopathogenic bacterium Bacillus thuringiensis Berliner. We also evaluated the sex-specific mortality of L. dispar induced by B. thuringiensis infection. We find that antibacterial activity in the midgut is activated by infection, but only in females. Thus, sex differences in immunity can have important effects even before sexual differentiation at adulthood.
Collapse
Affiliation(s)
- Irina Belousova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, Novosibirsk 630091, Russia
| | - Sergey Pavlushin
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, Novosibirsk 630091, Russia
- Biological Institute, National Research Tomsk State University, Lenin Ave. 36, Tomsk, 634050, Russia
| | - Anna Subbotina
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, Novosibirsk 630091, Russia
| | - Natalya Rudneva
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, Novosibirsk 630091, Russia
| | - Vyacheslav Martemyanov
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, Novosibirsk 630091, Russia
- Reshetnev Siberian State University of Science and Technology, Krasnoyarsky Rabochy Ave. 31, Krasnoyarsk 660037, Russia
| |
Collapse
|
8
|
Yang M, Wang Z, Wang R, Zhang X, Li M, Xin J, Qin Y, Zhang C, Meng F. Transcriptomic and proteomic analyses of the mechanisms of overwintering diapause in soybean pod borer (Leguminivora glycinivorella). PEST MANAGEMENT SCIENCE 2020; 76:4248-4257. [PMID: 32633047 DOI: 10.1002/ps.5989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/24/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Soybean pod borer (Leguminivora glycinivorella) is an important soybean pest in north-eastern Asia, whose mature larvae overwinter in a diapause state. Disruption of winter diapause may be a valuable tool in pest management. However, the molecular mechanisms regulating diapause in this species have not yet been elucidated. RESULTS We compared the transcriptomes and proteomes between diapause and mature larvae and between mature and newly developed pupae to identify the genes and proteins associated with diapause. Thirty-seven differentially expressed genes and their proteins changed synchronously between diapause and mature larvae and 82 changed synchronously between diapause larvae and newly developed pupae. Among these, genes involved in fatty acid biosynthesis and the longevity regulating pathway were up-regulated in diapause larvae and down-regulated in newly developed pupae, suggesting that they may regulate diapause. One fatty acid synthase (FAS) gene and two small heat shock genes (HSP19.8 and HSP18.9) were chosen for further functional analysis. After RNA interference (RNAi)-mediated knockdown of FAS, the survival of mature larvae was significantly lower than that of control larvae, but the mean developmental time from first-instar larva to adult remained unchanged. RNAi-mediated knockdown of HSP19.8 and HSP18.9 severely shortened the mean developmental time, causing approximately 50% larvae to develop directly into pupae. CONCLUSION FAS and the small heat shock gene play roles in diapause regulation and larvae survival. This study provides important information that may assist in understanding the molecular regulatory mechanisms of overwintering diapause of this important agricultural insect pest. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mingyu Yang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Zhanchun Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Rui Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiaoming Zhang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Mingyue Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Junjie Xin
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yushi Qin
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Chuan Zhang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Fanli Meng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Bai-Zhong Z, Xu S, Cong-Ai Z, Liu-Yang L, Ya-She L, Xing G, Dong-Mei C, Zhang P, MIng-Wang S, Xi-Ling C. Silencing of Cytochrome P450 in Spodoptera frugiperda (Lepidoptera: Noctuidae) by RNA Interference Enhances Susceptibility to Chlorantraniliprole. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5850352. [PMID: 32484869 PMCID: PMC7266073 DOI: 10.1093/jisesa/ieaa047] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 05/27/2023]
Abstract
Fall armyworm, Spodoptera frugiperda (Smith), has caused significant losses for crop production in China. The fall armyworm is mainly controlled by the chemical insecticides, whereas the frequent application of insecticides would result in the resistance development. Insect cytochrome P450 monooxygenases play an essential part in the detoxification of insecticides. In this study, five P450 genes were selected to determine the role in response to insecticides by RNA interference (RNAi). Developmental expression pattern analysis revealed that S. frugiperda CYP321A8, CYP321A9, and CYP321B1 were highest in second-instar larvae among developmental stages, with 2.04-, 3.39-, and 8.58-fold compared with eggs, whereas CYP337B5 and CYP6AE44 were highest in adult stage, with 16.3- and 10.6-fold in comparison of eggs, respectively. Tissue-specific expression pattern analysis exhibited that CYP321A8, CYP321B1, and CYP6AE44 were highest in the midguts, with 3.56-, 3.33-, and 3.04-fold compared with heads, whereas CYP321A9 and CYP337B5 were highest in wings, with 3.07- and 3.36-fold compared with heads, respectively. RNAi was also conducted to explore detoxification effects of the five P450 genes on chlorantraniliprole. The second-instar larvae became more sensitive to chlorantraniliprole with a higher mortality rate than the control, after silencing CYP321A8, CYP321A9, and CYP321B1, respectively. These findings strongly supported our viewpoint that CYP321A8, CYP321A9, and CYP321B1 may play a critical role in insecticide detoxification. It will provide a basis for further study on regulation of P450 genes and the management of S. frugiperda.
Collapse
Affiliation(s)
- Zhang Bai-Zhong
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province, P.R. China
| | - Su Xu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province, P.R. China
| | - Zhen Cong-Ai
- Department of Entomology, China Agricultural University, Beijing, P.R. China
| | - Lu Liu-Yang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province, P.R. China
| | - Li Ya-She
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province, P.R. China
| | - Ge Xing
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province, P.R. China
| | - Chen Dong-Mei
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province, P.R. China
| | - Pei Zhang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province, P.R. China
| | - Shi MIng-Wang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province, P.R. China
| | - Chen Xi-Ling
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province, P.R. China
| |
Collapse
|