1
|
Galas S, Le Goff E, Cazevieille C, Tanaka A, Cuq P, Baghdiguian S, Kunieda T, Godefroy N, Richaud M. A comparative ultrastructure study of the tardigrade Ramazzottius varieornatus in the hydrated state, after desiccation and during the process of rehydration. PLoS One 2024; 19:e0302552. [PMID: 38843161 PMCID: PMC11156355 DOI: 10.1371/journal.pone.0302552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/07/2024] [Indexed: 06/09/2024] Open
Abstract
Tardigrades can survive hostile environments such as desiccation by adopting a state of anhydrobiosis. Numerous tardigrade species have been described thus far, and recent genome and transcriptome analyses revealed that several distinct strategies were employed to cope with harsh environments depending on the evolutionary lineages. Detailed analyses at the cellular and subcellular levels are essential to complete these data. In this work, we analyzed a tardigrade species that can withstand rapid dehydration, Ramazzottius varieornatus. Surprisingly, we noted an absence of the anhydrobiotic-specific extracellular structure previously described for the Hypsibius exemplaris species. Both Ramazzottius varieornatus and Hypsibius exemplaris belong to the same evolutionary class of Eutardigrada. Nevertheless, our observations reveal discrepancies in the anhydrobiotic structures correlated with the variation in the anhydrobiotic mechanisms.
Collapse
Affiliation(s)
- Simon Galas
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Emilie Le Goff
- ISEM, University of Montpellier, CNRS, IRD, Montpellier, France
| | | | - Akihiro Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Pierre Cuq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Nelly Godefroy
- ISEM, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Myriam Richaud
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
2
|
Lacerda AL, Frias J, Pedrotti ML. Tardigrades in the marine plastisphere: New hitchhikers surfing plastics. MARINE POLLUTION BULLETIN 2024; 200:116071. [PMID: 38290365 DOI: 10.1016/j.marpolbul.2024.116071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/01/2024]
Abstract
Tardigrades are remarkable microorganisms known for their extraordinary resilience in diverse environments, including extreme conditions such as outer space. They are known for their interactions with natural substrates in terrestrial and aquatic systems, but have remained largely unexplored in relation to marine plastics. This study aims to investigate the colonization of plastics, ranging from fossil fuel-based to bioplastics, in the coastal zones of four countries (Brazil, Ireland, France and Italy). Here, we report the first documented occurrence of tardigrades colonizing plastic substrates. We identified five amplicon sequence variants (ASVs) belonging to the Tardigrada phylum, specifically in a post-consumer polypropylene, in the coastal zone of Galway, Ireland. This discovery raises questions about the characteristics of different plastics influencing on tardigrades' adhesion. Tardigrades hitchhiking on plastics in the oceans could expand their habitat range, possibly displacing native species and altering trophic interactions, with potential consequences for the overall biodiversity.
Collapse
Affiliation(s)
- Ana Luzia Lacerda
- Laboratoire d'Océanographie de Villefranche sur mer (LOV), UPMC Université Paris 06, CNRS UMR 7093, Sorbonne Université, Villefranche sur Mer, France.
| | - João Frias
- Marine and Freshwater Research Centre, Atlantic Technological University, Dublin Road, Galway H91 T8NW, Ireland
| | - Maria Luiza Pedrotti
- Laboratoire d'Océanographie de Villefranche sur mer (LOV), UPMC Université Paris 06, CNRS UMR 7093, Sorbonne Université, Villefranche sur Mer, France
| |
Collapse
|
3
|
Woodruff GC, Willis JH, Phillips PC. Patterns of Genomic Diversity in a Fig-Associated Close Relative of Caenorhabditis elegans. Genome Biol Evol 2024; 16:evae020. [PMID: 38302111 PMCID: PMC10883733 DOI: 10.1093/gbe/evae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
The evolution of reproductive mode is expected to have profound impacts on the genetic composition of populations. At the same time, ecological interactions can generate close associations among species, which can in turn generate a high degree of overlap in their spatial distributions. Caenorhabditis elegans is a hermaphroditic nematode that has enabled extensive advances in developmental genetics. Caenorhabditis inopinata, the sister species of C. elegans, is a gonochoristic nematode that thrives in figs and obligately disperses on fig wasps. Here, we describe patterns of genomic diversity in C. inopinata. We performed RAD-seq on individual worms isolated from the field across three Okinawan island populations. C. inopinata is about five times more diverse than C. elegans. Additionally, C. inopinata harbors greater differences in diversity among functional genomic regions (such as between genic and intergenic sequences) than C. elegans. Conversely, C. elegans harbors greater differences in diversity between high-recombining chromosome arms and low-recombining chromosome centers than C. inopinata. FST is low among island population pairs, and clear population structure could not be easily detected among islands, suggesting frequent migration of wasps between islands. These patterns of population differentiation appear comparable with those previously reported in its fig wasp vector. These results confirm many theoretical population genetic predictions regarding the evolution of reproductive mode and suggest C. inopinata population dynamics may be driven by wasp dispersal. This work sets the stage for future evolutionary genomic studies aimed at understanding the evolution of sex as well as the evolution of ecological interactions.
Collapse
Affiliation(s)
- Gavin C Woodruff
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
- Present address: Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
4
|
Kayastha P, Stec D, Sługocki Ł, Gawlak M, Mioduchowska M, Kaczmarek Ł. Integrative taxonomy reveals new, widely distributed tardigrade species of the genus Paramacrobiotus (Eutardigrada: Macrobiotidae). Sci Rep 2023; 13:2196. [PMID: 36750641 PMCID: PMC9905614 DOI: 10.1038/s41598-023-28714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
In a moss sample collected in Ribeiro Frio, Madeira, Paramacrobiotus gadabouti sp. nov. was found and described using the integrative taxonomy approach. The new species is described based on morphological and morphometric data from both phase-contrast light microscopy (PCM), as well as scanning electron microscopy (SEM). Moreover, four DNA markers, three nuclear (18S rRNA, 28S rRNA, ITS-2) and one mitochondrial (COI) markers, were used to elucidate the phylogenetic position of the new species within the family Macrobiotidae. The new species has a microplacoid that placed it within Parmacrobiotus richtersi group and exhibit richtersi-type eggs having processes terminated with cap-like structures. Paramacrobiotus gadabouti sp. nov. is most similar to Pam. alekseevi, Pam. filipi and Pam. garynahi, but differs from them mainly in details of egg morphology and morphometrics. Unlike other species from this group, which were confirmed as bisexual and showed limited distribution, Paramacrobiotus gadabouti sp. nov. is yet another parthenogenetic species with a wide distribution, demonstrating that at least some tardigrades confirm to the hypothesis of 'everything is everywhere'.
Collapse
Affiliation(s)
- Pushpalata Kayastha
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Daniel Stec
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016, Kraków, Poland
| | - Łukasz Sługocki
- Department of Hydrobiology, Institute of Biology, University of Szczecin, Szczecin, Poland
| | - Magdalena Gawlak
- The Institute of Plant Protection-National Research Institute, Węgorka 20, 60-318, Poznań, Poland
| | - Monika Mioduchowska
- Department of Evolutionary Genetics and Biosystematics, Faculty of Biology, University of Gdańsk, Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
5
|
Roszkowska M, Gołdyn B, Wojciechowska D, Księżkiewicz Z, Fiałkowska E, Pluskota M, Kmita H, Kaczmarek Ł. How long can tardigrades survive in the anhydrobiotic state? A search for tardigrade anhydrobiosis patterns. PLoS One 2023; 18:e0270386. [PMID: 36630322 PMCID: PMC9833599 DOI: 10.1371/journal.pone.0270386] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Anhydrobiosis is a desiccation tolerance that denotes the ability to survive almost complete dehydration without sustaining damage. The knowledge on the survival capacity of various tardigrade species in anhydrobiosis is still very limited. Our research compares anhydrobiotic capacities of four tardigrade species from different genera, i.e. Echiniscus testudo, Paramacrobiotus experimentalis, Pseudohexapodibius degenerans and Macrobiotus pseudohufelandi, whose feeding behavior and occupied habitats are different. Additionally, in the case of Ech. testudo, we analyzed two populations: one urban and one from a natural habitat. The observed tardigrade species displayed clear differences in their anhydrobiotic capacity, which appear to be determined by the habitat rather than nutritional behavior of species sharing the same habitat type. The results also indicate that the longer the state of anhydrobiosis lasts, the more time the animals need to return to activity.
Collapse
Affiliation(s)
- Milena Roszkowska
- Faculty of Biology, Department of Animal Taxonomy and Ecology, Adam Mickiewicz University, Poznań, Poland
- Faculty of Biology, Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Bartłomiej Gołdyn
- Faculty of Biology, Department of General Zoology, Adam Mickiewicz University, Poznań, Poland
| | - Daria Wojciechowska
- Faculty of Physics, Department of Biomedical Physics, Adam Mickiewicz University, Poznań, Poland
| | - Zofia Księżkiewicz
- Faculty of Biology, Department of General Zoology, Adam Mickiewicz University, Poznań, Poland
| | - Edyta Fiałkowska
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Mateusz Pluskota
- Faculty of Biology, Department of General Zoology, Adam Mickiewicz University, Poznań, Poland
| | - Hanna Kmita
- Faculty of Biology, Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Łukasz Kaczmarek
- Faculty of Biology, Department of Animal Taxonomy and Ecology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
6
|
Tibbs-Cortes LE, Tibbs-Cortes BW, Schmitz-Esser S. Tardigrade Community Microbiomes in North American Orchards Include Putative Endosymbionts and Plant Pathogens. Front Microbiol 2022; 13:866930. [PMID: 35923389 PMCID: PMC9340075 DOI: 10.3389/fmicb.2022.866930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
The microbiome of tardigrades, a phylum of microscopic animals best known for their ability to survive extreme conditions, is poorly studied worldwide and completely unknown in North America. An improved understanding of tardigrade-associated bacteria is particularly important because tardigrades have been shown to act as vectors of the plant pathogen Xanthomonas campestris in the laboratory. However, the potential role of tardigrades as reservoirs and vectors of phytopathogens has not been investigated further. This study analyzed the microbiota of tardigrades from six apple orchards in central Iowa, United States, and is the first analysis of the microbiota of North American tardigrades. It is also the first ever study of the tardigrade microbiome in an agricultural setting. We utilized 16S rRNA gene amplicon sequencing to characterize the tardigrade community microbiome across four contrasts: location, substrate type (moss or lichen), collection year, and tardigrades vs. their substrate. Alpha diversity of the tardigrade community microbiome differed significantly by location and year of collection but not by substrate type. Our work also corroborated earlier findings, demonstrating that tardigrades harbor a distinct microbiota from their environment. We also identified tardigrade-associated taxa that belong to genera known to contain phytopathogens (Pseudomonas, Ralstonia, and the Pantoea/Erwinia complex). Finally, we observed members of the genera Rickettsia and Wolbachia in the tardigrade microbiome; because these are obligate intracellular genera, we consider these taxa to be putative endosymbionts of tardigrades. These results suggest the presence of putative endosymbionts and phytopathogens in the microbiota of wild tardigrades in North America.
Collapse
Affiliation(s)
- Laura E. Tibbs-Cortes
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, United States
- *Correspondence: Laura E. Tibbs-Cortes,
| | - Bienvenido W. Tibbs-Cortes
- Department of Animal Science, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
7
|
Książkiewicz Z, Roszkowska M. Experimental evidence for snails dispersing tardigrades based on Milnesium inceptum and Cepaea nemoralis species. Sci Rep 2022; 12:4421. [PMID: 35422107 PMCID: PMC9010452 DOI: 10.1038/s41598-022-08265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/02/2022] [Indexed: 11/09/2022] Open
Abstract
Dispersal abilities in animals contribute to their local genetic variability and species persistence. However, the mechanisms facilitating a short-distance migration of small organisms remain underexplored. In this study we experimentally tested the role of land snails for a fine-scale transmission of tardigrades. We also check the ecological relationship between these two groups, by testing the impact of snail's mucus on tardigrades in anhydrobiosis. All the experiments were conducted under laboratory conditions. As model organisms, we used a tardigrade species Milnesium inceptum and a snail species Cepaea nemoralis. The selection of the experimental animals was dictated by their co-occurrence in natural habitats and similar atmospheric conditions required for them to remain active. Results of our experiments support the assumption that snails may transfer active tardigrades for short distances. On the other hand, the effect of the snails mucus on tardigrade recovery to active life after anhydrobiosis was negative. Death rates of tardigrades in anhydrobiosis (tun) were higher when affected by mucus compared to mucus-free tuns.
Collapse
Affiliation(s)
- Zofia Książkiewicz
- Department of General Zoology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland.
| | - Milena Roszkowska
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| |
Collapse
|
8
|
Morek W, Surmacz B, López‐López A, Michalczyk Ł. "Everything is not everywhere": Time-calibrated phylogeography of the genus Milnesium (Tardigrada). Mol Ecol 2021; 30:3590-3609. [PMID: 33966339 PMCID: PMC8361735 DOI: 10.1111/mec.15951] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/31/2021] [Accepted: 04/29/2021] [Indexed: 11/29/2022]
Abstract
There is ample evidence that macroscopic animals form geographic clusters termed as zoogeographic realms, whereas distributions of species of microscopic animals are still poorly understood. The common view has been that micrometazoans, thanks to their putatively excellent dispersal abilities, are subject to the "Everything is everywhere but environment selects" hypothesis (EiE). One of such groups, <1 mm in length, are limnoterrestrial water bears (Tardigrada), which can additionally enter cryptobiosis that should further enhance their potential for long distance dispersion (e.g., by wind). However, an increasing number of studies, including the most recent phylogeny of the eutardigrade genus Milnesium, seem to question the general applicability of the EiE hypothesis to tardigrade species. Nevertheless, all Milnesium phylogenies published to date were based on a limited number of populations, which are likely to falsely suggest limited geographic ranges. Thus, in order to test the EiE hypothesis more confidently, we considerably enlarged the Milnesium data set both taxonomically and geographically, and analysed it in tandem with climate type and reproductive mode. Additionally, we time-calibrated our phylogeny to align it with major geological events. Our results show that, although cases of long distance dispersal are present, they seem to be rare and mostly ancient. Overall, Milnesium species are restricted to single zoogeographic realms, which suggests that these tardigrades have limited dispersal abilities. Finally, our results also suggest that the breakdown of Gondwana may have influenced the evolutionary history of Milnesium. In conclusion, phylogenetic relationships within the genus seem to be determined mainly by paleogeography.
Collapse
Affiliation(s)
- Witold Morek
- Department of Invertebrate EvolutionInstitute of Zoology and Biomedical ResearchFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Bartłomiej Surmacz
- Department of Invertebrate EvolutionInstitute of Zoology and Biomedical ResearchFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Alejandro López‐López
- Department of Invertebrate EvolutionInstitute of Zoology and Biomedical ResearchFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Łukasz Michalczyk
- Department of Invertebrate EvolutionInstitute of Zoology and Biomedical ResearchFaculty of BiologyJagiellonian UniversityKrakówPoland
| |
Collapse
|
9
|
Bartlow AW, Agosta SJ. Phoresy in animals: review and synthesis of a common but understudied mode of dispersal. Biol Rev Camb Philos Soc 2020; 96:223-246. [PMID: 32924275 DOI: 10.1111/brv.12654] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022]
Abstract
Phoresy is a type of interaction in which one species, the phoront, uses another species, the dispersal host, for transportation to new habitats or resources. Despite being a widespread behaviour, little is known about the ecology and evolution of phoresy. Our goal is to provide a comprehensive review of phoretic dispersal in animals and to bring renewed attention to this subject. We surveyed literature published between 1900 and 2020 to understand the extent of known higher-level taxonomic diversity (phyla, classes, and orders) and functional aspects of animals that use phoretic dispersal. Species dispersing phoretically have been observed in at least 13 animal phyla, 25 classes, and 60 orders. The majority of known phoronts are arthropods (Phylum Euarthropoda) in terrestrial habitats, but phoronts also occur in freshwater and marine environments. Marine phoronts may be severely under-represented in the literature due to the relative difficulty of studying these systems. Phoronts are generally small with low mobility and use habitats or resources that are ephemeral and/or widely dispersed. Many phoronts are also parasites. In general, animals that engage in phoresy use a wide variety of morphological and behavioural traits for locating, attaching to, and detaching from dispersal hosts, but the exact mechanisms behind these activities are largely unknown. In addition to diversity, we discuss the evolution of phoresy including the long-standing idea that it can be a precursor to parasitism and other forms of symbioses. Finally, we suggest several areas of future research to improve our understanding of phoresy and its ecological and evolutionary significance.
Collapse
Affiliation(s)
- Andrew W Bartlow
- Biosecurity and Public Health, Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM, 87545, U.S.A
| | - Salvatore J Agosta
- Center for Environmental Studies, VCU Life Sciences, Virginia Commonwealth University, 1000 W. Cary St., Richmond, VA, 23284, U.S.A
| |
Collapse
|
10
|
Kihm JH, Kim S, McInnes SJ, Zawierucha K, Rho HS, Kang P, Park TYS. Integrative description of a new Dactylobiotus (Eutardigrada: Parachela) from Antarctica that reveals an intraspecific variation in tardigrade egg morphology. Sci Rep 2020; 10:9122. [PMID: 32499591 PMCID: PMC7272612 DOI: 10.1038/s41598-020-65573-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/06/2020] [Indexed: 02/01/2023] Open
Abstract
Tardigrades constitute one of the most important group in the challenging Antarctic terrestrial ecosystem. Living in various habitats, tardigrades play major roles as consumers and decomposers in the trophic networks of Antarctic terrestrial and freshwater environments; yet we still know little about their biodiversity. The Eutardigrada is a species rich class, for which the eggshell morphology is one of the key morphological characters. Tardigrade egg morphology shows a diverse appearance, and it is known that, despite rare, intraspecific variation is caused by seasonality, epigenetics, and external environmental conditions. Here we report Dactylobiotus ovimutans sp. nov. from King George Island, Antarctica. Interestingly, we observed a range of eggshell morphologies from the new species, although the population was cultured under controlled laboratory condition. Thus, seasonality, environmental conditions, and food source are eliminated, leaving an epigenetic factor as a main cause for variability in this case.
Collapse
Affiliation(s)
- Ji-Hoon Kihm
- Division of Polar Earth-System Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, 21990, Incheon, Korea
- Polar Science, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, 34113, Daejeon, Korea
| | - Sanghee Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, 21990, Incheon, Korea
| | - Sandra J McInnes
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Krzysztof Zawierucha
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Hyun Soo Rho
- East Sea Environment Research Center, East Sea Research Institute, Korea Institute of Ocean Science & Technology, 48 Haeyanggwahak-gil, Uljin, 36315, Gyeongsangbuk-do, Korea
| | - Pilmo Kang
- Division of Polar Earth-System Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, 21990, Incheon, Korea
| | - Tae-Yoon S Park
- Division of Polar Earth-System Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, 21990, Incheon, Korea.
- Polar Science, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, 34113, Daejeon, Korea.
| |
Collapse
|
11
|
Robertson MW, Russo NJ, McInnes SJ, Goffinet B, Jiménez JE. Potential dispersal of tardigrades by birds through endozoochory: evidence from Sub-Antarctic White-bellied Seedsnipe (Attagis malouinus). Polar Biol 2020. [DOI: 10.1007/s00300-020-02680-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Villella J, Miller JED, Young AR, Carey G, Emanuels A, Miller WR. Tardigrades in the Forest Canopy: Associations with Red Tree Vole Nests in Southwest Oregon. NORTHWEST SCIENCE 2020. [DOI: 10.3955/046.094.0102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- John Villella
- Siskiyou BioSurvey LLC, 265 Ball Rd., Eagle Point, Oregon 97520
| | - Jesse E. D. Miller
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, California, 94305
| | - Alexander R. Young
- Forest and Natural Resource Management, State University of New York, 1 Forestry Drive, Syracuse, New York 13210
| | - Greg Carey
- Siskiyou BioSurvey LLC, 265 Ball Rd., Eagle Point, Oregon 97520
| | - Andrew Emanuels
- Department of Biology and Chemistry, Baker University, P.O. Box 65, Baldwin City, Kansas, 66006
| | - William R. Miller
- Department of Biology and Chemistry, Baker University, P.O. Box 65, Baldwin City, Kansas, 66006
| |
Collapse
|
13
|
Gąsiorek P, Jackson KJ, Meyer HA, Zając K, Nelson DR, Kristensen RM, Michalczyk Ł. Echiniscus virginicus complex: the first case of pseudocryptic allopatry and pantropical distribution in tardigrades. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractMainly because of the problems with species delineation, the biogeography of microscopic organisms is notoriously difficult to elucidate. In this contribution, variable nuclear and mitochondrial DNA markers were sequenced from individual specimens representing the Echiniscus virginicus complex that are morphologically indistinguishable under light microscopy (five populations from the temperate Eastern Nearctic and 13 populations from the subtropical and tropical zone). A range of methods was used to dissect components of variability within the complex (Bayesian inference, haplotype networks, Poisson tree processes, automatic barcode gap discovery delineations, principal components analysis and ANOVA). We found deep divergence between the temperate Eastern Nearctic E. virginicus and pantropical Echiniscus lineatus in all three genetic markers. In contrast, intraspecific genetic variation was very low, regardless of the geographical distance between the populations. Moreover, for the first time, statistical predictions of tardigrade geographical distributions were modelled. The factor determining the allopatric geographical ranges of deceptively similar species analysed in this study is most likely to be the type of climate. Our study shows that widespread tardigrade species exist, and both geographical distribution modelling and the genetic structure of populations of the pantropical E. lineatus suggest wind-mediated (aeolian) passive long-distance dispersal.
Collapse
Affiliation(s)
- Piotr Gąsiorek
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Kathy J Jackson
- Department of Biology, McNeese State University, Lake Charles, LA, USA
| | - Harry A Meyer
- Department of Biology, McNeese State University, Lake Charles, LA, USA
| | - Krzysztof Zając
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Diane R Nelson
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Reinhardt M Kristensen
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| | - Łukasz Michalczyk
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa, Kraków, Poland
| |
Collapse
|
14
|
Heatwole H, Miller WR. Structure of micrometazoan assemblages in the Larsemann Hills, Antarctica. Polar Biol 2019. [DOI: 10.1007/s00300-019-02557-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Fontaneto D. Long-distance passive dispersal in microscopic aquatic animals. MOVEMENT ECOLOGY 2019; 7:10. [PMID: 30962931 PMCID: PMC6434837 DOI: 10.1186/s40462-019-0155-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/05/2019] [Indexed: 05/21/2023]
Abstract
Given their dormancy capability (long-term resistant stages) and their ability to colonise and reproduce, microscopic aquatic animals have been suggested having cosmopolitan distribution. Their dormant stages may be continuously moved by mobile elements through the entire planet to any suitable habitat, preventing the formation of biogeographical patterns. In this review, I will go through the evidence we have on the most common microscopic aquatic animals, namely nematodes, rotifers, and tardigrades, for each of the assumptions allowing long-distance dispersal (dormancy, viability, and reproduction) and all the evidence we have for transportation, directly from surveys of dispersing stages, and indirectly from the outcome of successful dispersal in biogeographical and phylogeographical studies. The current knowledge reveals biogeographical patterns also for microscopic organisms, with species-specific differences in ecological features that make some taxa indeed cosmopolitan with the potential for long-distance dispersal, but others with restricted geographic distributions.
Collapse
Affiliation(s)
- Diego Fontaneto
- National Research Council of Italy, Water Research Institute, Largo Tonolli 50, 28922 Verbania Pallanza, Italy
| |
Collapse
|
16
|
Young AR, Miller JED, Villella J, Carey G, Miller WR. Epiphyte type and sampling height impact mesofauna communities in Douglas-fir trees. PeerJ 2018; 6:e5699. [PMID: 30345168 PMCID: PMC6187993 DOI: 10.7717/peerj.5699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/05/2018] [Indexed: 11/23/2022] Open
Abstract
Branches and boles of trees in wet forests are often carpeted with lichens and bryophytes capable of providing periodically saturated habitat suitable for microfauna, animals that include tardigrades, rotifers, nematodes, mites, and springtails. Although resident microfauna likely exhibit habitat preferences structured by fine-scale environmental factors, previous studies rarely report associations between microfaunal communities and habitat type (e.g., communities that develop in lichens vs. bryophytes). Microfaunal communities were examined across three types of epiphyte and three sampling heights to capture gradients of microenvironment. Tardigrades, rotifers, and nematodes were significantly more abundant in bryophytes than fruticose lichen or foliose lichen. Eight tardigrade species and four tardigrade taxa were found, representing two classes, three orders, six families, and eight genera. Tardigrade community composition was significantly different between bryophytes, foliose lichen, fruticose lichen, and sampling heights. We show that microenvironmental factors including epiphyte type and sampling height shape microfaunal communities and may mirror the environmental preferences of their epiphyte hosts.
Collapse
Affiliation(s)
- Alexander R Young
- Department of Forest and Natural Resource Management College of Environmental Science and Forestry, State University of New York (SUNY), Syracuse, NY, United States of America
| | - Jesse E D Miller
- Department of Environmental Science and Policy, University of California, Davis, CA, United States of America
| | - John Villella
- Siskiyou Biosurvey, Ashland, OR, United States of America
| | - Greg Carey
- Siskiyou Biosurvey, Ashland, OR, United States of America
| | - William R Miller
- Department of Biology and Chemistry, Baker University, Baldwin City, KS, United States of America
| |
Collapse
|