1
|
Luo HY, Li G, Liu YG, Wei YH, Chen JB, Gu XF, Tang JQ, Zhao Y, Su CH, Xiao LY, Xiong F, Zheng ZD, Wang SY, Zha LY. The Accelerated Progression of Atherosclerosis Correlates with Decreased miR-33a and miR-21 and Increased miR-122 and miR-3064-5p in Circulation and the Liver of ApoE-/- Mice with Streptozocin (STZ)-Induced Type 2 Diabetes. Curr Issues Mol Biol 2022; 44:4822-4837. [PMID: 36286043 PMCID: PMC9601109 DOI: 10.3390/cimb44100328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is a major risk factor for type 2 diabetes (T2D) mortality. We aim to investigate the changes in miR-21, miR-122, miR-33a and miR-3064-5p in circulation and the liver of ApoE-/- mice with streptozocin (STZ)-induced T2D. Twenty 5-week-old male ApoE-/- mice were randomly assigned to the control (n = 10) and T2D group (n = 10) and intraperitoneally injected with a citrate buffer and streptozotocin (STZ) (40 mg/kg BW) once a day for three consecutive days. The successfully STZ-induced T2D mice (n = 5) and control mice (n = 5) were then fed with a high-fat diet (HFD) for 34 weeks. Compared to the control mice, ApoE-/- mice with STZ-induced T2D had slower (p < 0.05) growth, increased (p < 0.05) total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), decreased (p < 0.05) high-density lipoprotein cholesterol (HDL-C) in serum, reduced (p < 0.05) TC and sterol regulatory element-binding protein-2 (Srebp-2), elevated (p < 0.05) ATP-binding-cassette-transporter-A1 (Abca1) in the liver, aggravated (p < 0.05) atherosclerotic lesions in the aorta, downregulated (p < 0.05) miR-21 and miR-33a, and upregulated (p < 0.05) miR-122 and miR-3064-5p in serum and the liver. In addition, the aortic lesions showed a positive correlation with miR-122 (r = 1.000, p = 0.001) and a negative correlation with miR-21 (r = −1.000, p = 0.001) in ApoE-/- mice with T2D. In conclusion, T2D-accelerated atherosclerosis correlates with a reduction in miR-21 and miR-33a and an elevation in miR-122 and miR-3064-5p in circulation and the liver of ApoE-/- mice.
Collapse
|
2
|
James K, Bryl-Gorecka P, Olde B, Gidlof O, Torngren K, Erlinge D. Increased expression of miR-224-5p in circulating extracellular vesicles of patients with reduced coronary flow reserve. BMC Cardiovasc Disord 2022; 22:321. [PMID: 35850658 PMCID: PMC9290204 DOI: 10.1186/s12872-022-02756-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background Endothelial and microvascular dysfunction are pivotal causes of major adverse cardiac events predicted by coronary flow reserve (CFR). Extracellular Vesicles (EVs) have been studied extensively in the pathophysiology of coronary artery disease. However, little is known on the impact of the non-coding RNA content of EVs with respect to CFR. Methods We carried out a study among 120 patients divided by high-CFR and low-CFR to profile the miRNA content of circulating EVs. Results A multiplex array profiling on circulating EVs revealed mir-224-5p (p-value ≤ 0.000001) as the most differentially expressed miRNA in the Low-CFR group and showed a significantly independent relationship to CFR. Literature survey indicated the origin of the miR from liver cells and not of platelet, leukocyte, smooth muscle or endothelial (EC) origin. A q-PCR panel of the conventional cell type-EVs along with hepatic EVs showed that EVs from liver cells showed higher expression of the miR-224-5p. FACS analysis demonstrated the presence of liver-specific (ASGPR-1+/CD14−) EVs in the plasma of our cohort with the presence of Vanin-1 required to enter the EC barrier. Hepatic EVs with and without the miR-224-5p were introduced to ECs in-vitro, but with no difference in effect on ICAM-1 or eNOS expression. However, hepatic EVs elevated endothelial ICAM-1 levels per se independent of the miR-224-5p. Conclusion This indicated a role of hepatic EVs identified by the miR-224-5p in endothelial dysfunction in patients with Low CFR. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02756-w.
Collapse
Affiliation(s)
- Kreema James
- Department of Cardiology, Clinical Sciences, Biomedical Centre, Faculty of Medicine, Lund University, D12, Sölvegatan 17, 22362, Lund, Sweden.
| | - Paulina Bryl-Gorecka
- Department of Cardiology, Clinical Sciences, Biomedical Centre, Faculty of Medicine, Lund University, D12, Sölvegatan 17, 22362, Lund, Sweden
| | - Björn Olde
- Department of Cardiology, Clinical Sciences, Biomedical Centre, Faculty of Medicine, Lund University, D12, Sölvegatan 17, 22362, Lund, Sweden
| | - Olof Gidlof
- Department of Cardiology, Clinical Sciences, Biomedical Centre, Faculty of Medicine, Lund University, D12, Sölvegatan 17, 22362, Lund, Sweden
| | - Kristina Torngren
- Department of Cardiology, Clinical Sciences, Biomedical Centre, Faculty of Medicine, Lund University, D12, Sölvegatan 17, 22362, Lund, Sweden
| | - David Erlinge
- Department of Cardiology, Clinical Sciences, Biomedical Centre, Faculty of Medicine, Lund University, D12, Sölvegatan 17, 22362, Lund, Sweden
| |
Collapse
|
3
|
Du N, Li M, Yang D. Hsa_circRNA_102541 regulates the development of atherosclerosis by targeting miR-296-5p/PLK1 pathway. Ir J Med Sci 2022; 191:1153-1159. [PMID: 34251586 DOI: 10.1007/s11845-021-02708-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/26/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cardiovascular disorders pose great threat to public health. As a common type of cardiovascular disease, atherosclerosis is characterized by high morbidity and mortality/recurrence rate. However, the pathogenesis of atherosclerosis is complex and not fully understood. The aim of this study was to investigate the influences of hsa_circRNA_102541 (circ_102541) on proliferation and apoptosis of HUVEC cells and to identify the underlying mechanisms. METHODS RT-PCR was used to determine the expression levels of circ_102541, miR-296-5p, and PLK1 in atherosclerosis and healthy blood samples. Following the transfection with sh-circ_102541, LV-circ_102541, miR-296-5p mimics, miR-296-5p inhibitors, and si-PLK1, cell proliferation was evaluated using CCK8 assay; cell apoptosis was determined by flow cytometry; dual luciferase assay was performed to examine the interaction between abovementioned molecules. The levels of associated markers including PCNA and caspase-3 were assessed by western blotting and RT-qPCR. RESULTS The expression of circRNA_102541 and PLK1 were significantly elevated in atherosclerosis specimens, where the level of miR-296-5p was reduced. Furthermore, circRNA_102541 could bind miR-296-5p and subsequently target PLK1. Following treatment with sh-circRNA_102541 or miR-296-5p mimics, proliferative ability and levels of PCNA were remarkably reduced in HUVEC cells, while apoptosis was significantly enhanced. Co-transfection with miR-296-5p mimics abrogated the effects induced by the overexpressed circ_102541. Additionally, treatment with si-PLK1 attenuated the biological behavior changes caused by miR-296-5p inhibitors in HUVEC cells. Moreover, transfection with LV-PLK1 reversed the effects triggered by miR-296-5p mimics. CONCLUSION Taken together, circRNA_102541 was upregulated in atherosclerosis, and knockdown of circRNA_102541 suppressed cell proliferation while promoted apoptosis of HUVEC cells via miR-296-5p/PLK1. This novel pathway may serve essential roles on the development of atherosclerosis, and circRNA_102541 could be a promising therapeutic candidate for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Na Du
- Department of Cardiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Mingjin Li
- Liaoning Jinqiu Hospital, Shenyang, Liaoning, 110015, People's Republic of China
| | - Dan Yang
- Department of Dermatology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China.
| |
Collapse
|
4
|
Gaddam RR, Dhuri K, Kim YR, Jacobs JS, Kumar V, Li Q, Irani K, Bahal R, Vikram A. γ Peptide Nucleic Acid-Based miR-122 Inhibition Rescues Vascular Endothelial Dysfunction in Mice Fed a High-Fat Diet. J Med Chem 2022; 65:3332-3342. [PMID: 35133835 PMCID: PMC8883473 DOI: 10.1021/acs.jmedchem.1c01831] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The blood levels
of microRNA-122 (miR-122) is associated with the
severity of cardiovascular disorders, and targeting it with efficient
and safer miR inhibitors could be a promising approach. Here, we report
the generation of a γ-peptide nucleic acid (γPNA)-based
miR-122 inhibitor (γP-122-I) that rescues vascular endothelial
dysfunction in mice fed a high-fat diet. We synthesized diethylene
glycol-containing γP-122-I and found that its systemic administration
counteracted high-fat diet (HFD)-feeding-associated increase in blood
and aortic miR-122 levels, impaired endothelial function, and reduced
glycemic control. A comprehensive safety analysis established that
γP-122-I affects neither the complete blood count nor biochemical
tests of liver and kidney functions during acute exposure. In addition,
long-term exposure to γP-122-I did not change the overall adiposity,
or histology of the kidney, liver, and heart. Thus, γP-122-I
rescues endothelial dysfunction without any evidence of toxicity in vivo and demonstrates the suitability of γPNA technology
in generating efficient and safer miR inhibitors.
Collapse
Affiliation(s)
- Ravinder Reddy Gaddam
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, Iowa 52242, United States
| | - Karishma Dhuri
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Young-Rae Kim
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, Iowa 52242, United States
| | - Julia S Jacobs
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, Iowa 52242, United States
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Qiuxia Li
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, Iowa 52242, United States
| | - Kaikobad Irani
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, Iowa 52242, United States
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ajit Vikram
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
5
|
Yang J, Yang XS, Fan SW, Zhao XY, Li C, Zhao ZY, Pei HJ, Qiu L, Zhuang X, Yang CH. Prognostic value of microRNAs in heart failure: A meta-analysis. Medicine (Baltimore) 2021; 100:e27744. [PMID: 34797300 PMCID: PMC8601330 DOI: 10.1097/md.0000000000027744] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 10/25/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Reported studies have shown that expression levels of microRNAs (miRNAs) are related to survival time of patients with heart failure (HF). A systematic review and meta-analysis were conducted to study circulating miRNAs expression and patient outcome. METHODS Meta-analysis estimating expression levels of circulating miRNAs in HF patients from January 2010 until June 30, 2018, through conducting online searches in Pub Med, Cochrane Database of Systematic, EMBASE and Web of Science and reviewed by 2 independent researchers. Using pooled hazard ratio with a 95% confidence interval to assess the correlation between miRNAs expression levels and overall survival. RESULTS Four relevant articles assessing 19 circulating miRNAs in 867 patients were included. In conclusion, the meta-analysis results suggest that HF patients with low expression of serum miR-1, miR-423-5p, miR-126, miR-21, miR-23, miR-30d, miR-18a-5p, miR-16-5p, miR-18b-5p, miR-27a-3p, miR-26b-5p, miR-30e-5p, miR-106a-5p, miR-233-3P, miR-301a-3p, miR-423-3P, and miR-128 have significantly worse overall survival (P < .05). Among them, miR-18a-5p, miR-18b-5p, miR-30d, miR-30e-5p, and miR-423-5p are strong biomarkers of prognosis in HF.
Collapse
Affiliation(s)
- Jie Yang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Jinan, China
| | - Xue-Song Yang
- Department of Vascular Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shao-Wei Fan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Yu Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zheng-Yao Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui-Juan Pei
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lu Qiu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Zhuang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Jinan, China
| | - Chuan-Hua Yang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Jinan, China
| |
Collapse
|
6
|
Ali W, Mishra S, Rizvi A, Pradhan A, Perrone MA. Circulating microRNA-126 as an Independent Risk Predictor of Coronary Artery Disease: A Case-Control Study. EJIFCC 2021; 32:347-362. [PMID: 34819824 PMCID: PMC8592629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
CONTEXT Circulating microRNAs (miR) have revolutionized the field of molecular biology owing to their potential as a diagnostic as well as a prognostic biomarker of cardiovascular disease and dysfunctions. The present study aims to identify the circulating miR-126 and -122 as an independent risk predictors of coronary artery disease cases. METHODS AND MATERIAL Blood samples were collected from coronary artery disease cases (n=100) and non-CAD cases (n=100). Serum RNA was isolated by Trizol method. MiR levels were measured by quantitative real-time polymerase chain reaction with the specific primer probe set. RESULTS MiR-126 levels were significantly down-regulated in CAD cases compared to non-CAD cases (controls) (80.0% vs. 39.0%, χ2=14.95, p<0.001). The level of miR-122 was significantly up-regulated in CAD cases in comparison to its non-CAD variant (14.0% vs. 63.0%, χ2=21.23, p<0.001). Multivariate analysis found chest pain (OR=37.07, 95% CI=3.21-169.04, p=0.017) and miR-126 (OR=0.01, 95% CI=0.00-0.63, p=0.030) as independent risk predictors of CAD. CONCLUSION The results of our study show the potential of circulating miR-126 as a novel non-invasive biomarker in the risk prediction of CAD. Further unraveling of the role of miR-122 and miR-126 in the pathogenesis and progression of CAD will add to our understanding of the disease process leading to a new diagnostic approach. HIGHLIGHTS Mir-122 and -126 significantly differentiate non CAD cases from angiographically proven CAD casesChest pain and miR-126 might work as an independent risk predictor of coronary artery disease.
Collapse
Affiliation(s)
- Wahid Ali
- Department of Pathology, King George’s Medical University, Lucknow, U. P., India
| | - Sridhar Mishra
- Department of Pathology, King George’s Medical University, Lucknow, U. P., India
- Department of Pathology, Dr, Ram Manohar Lohia Institute of Medical Sciences, Lucknow, U. P., India
| | - Aliya Rizvi
- Department of Pathology, King George’s Medical University, Lucknow, U. P., India
| | - Akshaaya Pradhan
- Lari Cardiology Centre, Department of Cardiology, King George’s Medical University, Lucknow, U. P., India
| | - Marco A. Perrone
- Division of Cardiology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
7
|
Liu Y, Song JW, Lin JY, Miao R, Zhong JC. Roles of MicroRNA-122 in Cardiovascular Fibrosis and Related Diseases. Cardiovasc Toxicol 2020; 20:463-473. [PMID: 32856216 PMCID: PMC7451782 DOI: 10.1007/s12012-020-09603-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
Fibrotic diseases cause annually more than 800,000 deaths worldwide, where of the majority accounts for cardiovascular fibrosis, which is characterized by endothelial dysfunction, myocardial stiffening and reduced dispensability. MicroRNAs (miRs), small noncoding RNAs, play critical roles in cardiovascular dysfunction and related disorders. Intriguingly, there is a critical link among miR-122, cardiovascular fibrosis, sirtuin 6 (SIRT6) and angiotensin-converting enzyme 2 (ACE2), which was recently identified as a coreceptor for SARS-CoV2 and a negative regulator of the rennin-angiotensin system. MiR-122 overexpression appears to exacerbate the angiotensin II-mediated loss of autophagy and increased inflammation, apoptosis, extracellular matrix deposition, cardiovascular fibrosis and dysfunction by modulating the SIRT6-Elabela-ACE2, LGR4-β-catenin, TGFβ-CTGF and PTEN-PI3K-Akt signaling pathways. More importantly, the inhibition of miR-122 has proautophagic, antioxidant, anti-inflammatory, anti-apoptotic and antifibrotic effects. Clinical and experimental studies clearly demonstrate that miR-122 functions as a crucial hallmark of fibrogenesis, cardiovascular injury and dysfunction. Additionally, the miR-122 level is related to the severity of hypertension, atherosclerosis, atrial fibrillation, acute myocardial infarction and heart failure, and miR-122 expression is a risk factor for these diseases. The miR-122 level has emerged as an early-warning biomarker cardiovascular fibrosis, and targeting miR-122 is a novel therapeutic approach against progression of cardiovascular dysfunction. Therefore, an increased understanding of the cardiovascular roles of miR-122 will help the development of effective interventions. This review summarizes the biogenesis of miR-122; regulatory effects and underlying mechanisms of miR-122 on cardiovascular fibrosis and related diseases; and its function as a potential specific biomarker for cardiovascular dysfunction.
Collapse
Affiliation(s)
- Ying Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China.,Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jia-Wei Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China
| | - Jian-Yu Lin
- Department of Comprehensive Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ran Miao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China. .,Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China. .,Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
8
|
Shoeibi S. Diagnostic and theranostic microRNAs in the pathogenesis of atherosclerosis. Acta Physiol (Oxf) 2020; 228:e13353. [PMID: 31344321 DOI: 10.1111/apha.13353] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a group of small single strand and noncoding RNAs that regulate several physiological and molecular signalling pathways. Alterations of miRNA expression profiles may be involved with pathophysiological processes underlying the development of atherosclerosis and cardiovascular diseases, including changes in the functions of the endothelial cells and vascular smooth muscle cells, such as cell proliferation, migration and inflammation, which are involved in angiogenesis, macrophage function and foam cell formation. Thus, miRNAs can be considered to have a crucial role in the progression, modulation and regulation of every stage of atherosclerosis. Such potential biomarkers will enable us to predict therapeutic response and prognosis of cardiovascular diseases and adopt effective preclinical and clinical treatment strategies. In the present review article, the current data regarding the role of miRNAs in atherosclerosis were summarized and the potential miRNAs as prognostic, diagnostic and theranostic biomarkers in preclinical and clinical studies were further discussed. The highlights of this review are expected to present opportunities for future research of clinical therapeutic approaches in vascular diseases resulting from atherosclerosis with an emphasis on miRNAs.
Collapse
Affiliation(s)
- Sara Shoeibi
- Atherosclerosis Research Center Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| |
Collapse
|
9
|
Derakhshanfar A, Moayedi J, Vahedi M, Valizadeh A. Arum conophalloides Aqueous Extract Induced Hepatotoxicity in Rat; Histopathological, Biochemical, and mir-122 Assessments. Microrna 2019; 9:224-231. [PMID: 31622226 PMCID: PMC7366011 DOI: 10.2174/2211536608666191016142400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/17/2019] [Accepted: 08/07/2019] [Indexed: 11/29/2022]
Abstract
Background Arum conophalloides (A. conophalloides) is a wild edible delicate plant, widely used in traditional medicine. Objective This study aimed to examine the effects of A. conophalloides extracts on biochemical, molecular, and histopathological changes in the rat. Methods Fifty adult male Sprague-Dawley rats were divided into 5 groups (10 each) as follows: G1 or control, received distilled water; G2 and G3, treated with the aqueous extract at doses of 200 and 400 mg/kg; G4 and G5, treated with the hydroalcoholic extract at doses of 200 and 400 mg/kg. Prior to and at the end of the experiments, the serum levels of biochemistry parameters and the relative expression of miR-122 were assessed. Moreover, the liver and kidney tissues were examined microscopically. Results Liver and kidney tissues showed normal structure in all groups. There were no significant changes in biochemical indices or the expression of miR-122 in the extract-treated groups at the dose of 200 mg/kg. However, the group that received the aqueous extract at the dose of 400 mg/kg exhibited a significantly lower level of HDL, LDL, ALT, and ALP in comparison to the control. Additionally, miR-122 expression in this group exhibited a 10-fold increase (P=0.009). Conclusion The serum level of hepatocyte-specific miR-122 will be more helpful in detecting hepatic changes in early stages than ALT and AST activity or histopathological evaluations of liver sections. Our findings highlight the potential hepatotoxicity of A. conophalloides aqueous extract in a rat model.
Collapse
Affiliation(s)
- Amin Derakhshanfar
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Center of Comparative and Experimental Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Moayedi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Center of Comparative and Experimental Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahjoob Vahedi
- Center of Comparative and Experimental Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abouzar Valizadeh
- Center of Comparative and Experimental Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Soler-Botija C, Gálvez-Montón C, Bayés-Genís A. Epigenetic Biomarkers in Cardiovascular Diseases. Front Genet 2019; 10:950. [PMID: 31649728 PMCID: PMC6795132 DOI: 10.3389/fgene.2019.00950] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases are the number one cause of death worldwide and greatly impact quality of life and medical costs. Enormous effort has been made in research to obtain new tools for efficient and quick diagnosis and predicting the prognosis of these diseases. Discoveries of epigenetic mechanisms have related several pathologies, including cardiovascular diseases, to epigenetic dysregulation. This has implications on disease progression and is the basis for new preventive strategies. Advances in methodology and big data analysis have identified novel mechanisms and targets involved in numerous diseases, allowing more individualized epigenetic maps for personalized diagnosis and treatment. This paves the way for what is called pharmacoepigenetics, which predicts the drug response and develops a tailored therapy based on differences in the epigenetic basis of each patient. Similarly, epigenetic biomarkers have emerged as a promising instrument for the consistent diagnosis and prognosis of cardiovascular diseases. Their good accessibility and feasible methods of detection make them suitable for use in clinical practice. However, multicenter studies with a large sample population are required to determine with certainty which epigenetic biomarkers are reliable for clinical routine. Therefore, this review focuses on current discoveries regarding epigenetic biomarkers and its controversy aiming to improve the diagnosis, prognosis, and therapy in cardiovascular patients.
Collapse
Affiliation(s)
- Carolina Soler-Botija
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Gálvez-Montón
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Bayés-Genís
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- Cardiology Service, HUGTiP, Badalona, Spain
- Department of Medicine, Barcelona Autonomous University (UAB), Badalona, Spain
| |
Collapse
|
11
|
Skuratovskaia D, Vulf M, Komar A, Kirienkova E, Litvinova L. Promising Directions in Atherosclerosis Treatment Based on Epigenetic Regulation Using MicroRNAs and Long Noncoding RNAs. Biomolecules 2019; 9:E226. [PMID: 31212708 PMCID: PMC6627269 DOI: 10.3390/biom9060226] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022] Open
Abstract
Atherosclerosis is one of the leading causes of mortality from cardiovascular disease (CVD) and is a chronic inflammatory disease of the middle and large arteries caused by a disruption of lipid metabolism. Noncoding RNA (ncRNA), including microRNA (miRNA), small interfering RNA (siRNA) and long noncoding RNA (lncRNA), was investigated for the treatment of atherosclerosis. Regulation of the expression of noncoding RNA targets the constituent element of the pathogenesis of atherosclerosis. Currently, miRNA therapy commonly employs miRNA antagonists and mimic compounds. In this review, attention is focused on approaches to correcting molecular disorders based on the genetic regulation of the transcription of key genes responsible for the development of atherosclerosis. Promising technologies were considered for the treatment of atherosclerosis, and examples are given for technologies that have been shown to be effective in clinical trials.
Collapse
Affiliation(s)
- Daria Skuratovskaia
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Maria Vulf
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Aleksandra Komar
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Elena Kirienkova
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Larisa Litvinova
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| |
Collapse
|