1
|
Bandopadhyay S, Li X, Bowsher AW, Last RL, Shade A. Disentangling plant- and environment-mediated drivers of active rhizosphere bacterial community dynamics during short-term drought. Nat Commun 2024; 15:6347. [PMID: 39068162 PMCID: PMC11283566 DOI: 10.1038/s41467-024-50463-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Mitigating the effects of climate stress on crops is important for global food security. The microbiome associated with plant roots, the rhizobiome, can harbor beneficial microbes that alleviate stress, but the factors influencing their recruitment are unclear. We conducted a greenhouse experiment using field soil with a legacy of growing switchgrass and common bean to investigate the impact of short-term drought severity on the recruitment of active bacterial rhizobiome members. We applied 16S rRNA and 16S rRNA gene sequencing for both crops and metabolite profiling for switchgrass. We included planted and unplanted conditions to distinguish environment- versus plant-mediated rhizobiome drivers. Differences in community structure were observed between crops and between drought and watered and planted and unplanted treatments within crops. Despite crop-specific communities, drought rhizobiome dynamics were similar across the two crops. The presence of a plant more strongly explained the rhizobiome variation in bean (17%) than in switchgrass (3%), with a small effect of plant mediation during drought observed only for the bean rhizobiome. The switchgrass rhizobiome was stable despite changes in rhizosphere metabolite profiles between planted and unplanted treatments. We conclude that rhizobiome responses to short-term drought are crop-specific, with possible decoupling of plant exudation from rhizobiome responses.
Collapse
Affiliation(s)
- Sreejata Bandopadhyay
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
- U.S. Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Xingxing Li
- U.S. Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Alan W Bowsher
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Robert L Last
- U.S. Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Ashley Shade
- Universite Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, Laboratoire d'Ecologie Microbienne LEM, CNRS UMR5557, INRAE UMR1418, Villeurbanne, F-69100, France.
| |
Collapse
|
2
|
Ali I, Naz B, Liu Z, Chen J, Yang Z, Attia K, Ayub N, Ali I, Mohammed AA, Faisal S, Sun L, Xiao S, Chen S. Interplay among manures, vegetable types, and tetracycline resistance genes in rhizosphere microbiome. Front Microbiol 2024; 15:1392789. [PMID: 39011147 PMCID: PMC11246966 DOI: 10.3389/fmicb.2024.1392789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
The rapid global emergence of antibiotic resistance genes (ARGs) is a substantial public health concern. Livestock manure serves as a key reservoir for tetracycline resistance genes (TRGs), serving as a means of their transmission to soil and vegetables upon utilization as a fertilizer, consequently posing a risk to human health. The dynamics and transfer of TRGs among microorganisms in vegetables and fauna are being investigated. However, the impact of different vegetable species on acquisition of TRGs from various manure sources remains unclear. This study investigated the rhizospheres of three vegetables (carrots, tomatoes, and cucumbers) grown with chicken, sheep, and pig manure to assess TRGs and bacterial community compositions via qPCR and high-throughput sequencing techniques. Our findings revealed that tomatoes exhibited the highest accumulation of TRGs, followed by cucumbers and carrots. Pig manure resulted in the highest TRG levels, compared to chicken and sheep manure, in that order. Bacterial community analyses revealed distinct effects of manure sources and the selective behavior of individual vegetable species in shaping bacterial communities, explaining 12.2% of TRG variation. Firmicutes had a positive correlation with most TRGs and the intl1 gene among the dominant phyla. Notably, both the types of vegetables and manures significantly influenced the abundance of the intl1 gene and soil properties, exhibiting strong correlations with TRGs and elucidating 30% and 17.7% of TRG variance, respectively. Our study delineated vegetables accumulating TRGs from manure-amended soils, resulting in significant risk to human health. Moreover, we elucidated the pivotal roles of bacterial communities, soil characteristics, and the intl1 gene in TRG fate and dissemination. These insights emphasize the need for integrated strategies to reduce selection pressure and disrupt TRG transmission routes, ultimately curbing the transmission of tetracycline resistance genes to vegetables.
Collapse
Affiliation(s)
- Izhar Ali
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Beenish Naz
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ziyang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Jingwei Chen
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Zi Yang
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Kotb Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nasir Ayub
- Korean Environmental Microorganism Resource Center, Department of Integrative Biotechnology, Sungkyuankwan University, Seoul, Republic of Korea
| | - Ikram Ali
- Center for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Kowloon Tong, China
| | - Arif Ahmed Mohammed
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, China
| | - Likun Sun
- College of Animal Sciences, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Sa Xiao
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Shuyan Chen
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Mousa WK, Abu-Izneid T, Salah-Tantawy A. High-throughput sequencing reveals the structure and metabolic resilience of desert microbiome confronting climate change. FRONTIERS IN PLANT SCIENCE 2024; 15:1294173. [PMID: 38510442 PMCID: PMC10953687 DOI: 10.3389/fpls.2024.1294173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024]
Abstract
Introduction Desert ecosystems harbor a unique microbial diversity that is crucial for ecological stability and biogeochemical cycles. An in-depth understanding of the biodiversity, compositions, and functions of these microbial communities is imperative to navigate global changes and confront potential threats and opportunities applicable to agricultural ecosystems amid climate change. Methods This study explores microbial communities in the rhizosphere and endosphere of desert plants native to the Arabian Peninsula using next-generation sequencing of the 16S rRNA gene (V3-V4 hypervariable region). Results Our results reveal that each microbial community has a diverse and unique microbial composition. Based on alpha and beta diversity indices, the rhizosphere microbiome is significantly diverse and richer in microbial taxa compared to the endosphere. The data reveals a shift towards fast-growing microbes with active metabolism, involvement in nutrient cycling, nitrogen fixation, and defense pathways. Our data reveals the presence of habitat-specific microbial communities in the desert, highlighting their remarkable resilience and adaptability to extreme environmental conditions. Notably, we observed the existence of radiation-resistant microbes such as Deinococcus radiotolerans, Kocuria sp., and Rubrobacter radiotolerans which can tolerate high levels of ionizing radiation. Additionally, examples of microbes exhibiting tolerance to challenging conditions include Nocardioides halotolerans, thriving in high-salinity environments, and hyperthermophilic microbes such as Quasibacillus thermotolerans. Moreover, functional analysis reveals enrichment in chaperon biosynthesis pathways associated with correct protein folding under heat stress conditions. Discussion Our research sheds light on the unique diversity of desert microbes and underscores their potential applications to increase the resilience of agriculture ecosystems, offering a promising strategy to fortify crops against the challenges posed by climate change, ultimately supporting sustainable food production for our ever-expanding global population.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- Al Ain University (AAU) Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
- College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Tareq Abu-Izneid
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- Al Ain University (AAU) Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Ahmed Salah-Tantawy
- Institute of Analytical and Environmental Sciences, College of Nuclear Science, National Tsing Hua University, Hsinchu, Taiwan
- Department of Zoology, Marine Science Division, College of Science, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
4
|
Gallego-Clemente E, Moreno-González V, Ibáñez A, Calvo-Peña C, Ghoreshizadeh S, Radišek S, Cobos R, Coque JJR. Changes in the Microbial Composition of the Rhizosphere of Hop Plants Affected by Verticillium Wilt Caused by Verticillium nonalfalfae. Microorganisms 2023; 11:1819. [PMID: 37512991 PMCID: PMC10385175 DOI: 10.3390/microorganisms11071819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Verticillium wilt is a devastating disease affecting many crops, including hops. This study aims to describe fungal and bacterial populations associated with bulk and rhizosphere soils in a hop field cultivated in Slovenia with the Celeia variety, which is highly susceptible to Verticillium nonalfalfae. As both healthy and diseased plants coexist in the same field, we focused this study on the detection of putative differences in the microbial communities associated with the two types of plants. Bacterial communities were characterized by sequencing the V4 region of the 16S rRNA gene, whereas sequencing of the ITS2 region was performed for fungal communities. The bacterial community was dominated by phyla Proteobacteria, Acidobacteriota, Bacteroidota, Actinobacteriota, Planctomycetota, Chloroflexi, Gemmatimonadota, and Verrucomicrobiota, which are typically found in crop soils throughout the world. At a fungal level, Fusarium sp. was the dominant taxon in both bulk and rhizosphere soils. Verticillium sp. levels were very low in all samples analyzed and could only be detected by qPCR in the rhizosphere of diseased plants. The rhizosphere of diseased plants underwent important changes with respect to the rhizosphere of healthy plants where significant increases in potentially beneficial fungi such as the basidiomycetes Ceratobasidium sp. and Mycena sp., the zygomycete Mortierella sp., and a member of Glomeralles were observed. However, the rhizosphere of diseased plants experienced a decrease in pathogenic basidiomycetes that can affect the root system, such as Thanatephorus cucumeris (the teleomorph of Rhizoctonia solani) and Calyptella sp.
Collapse
Affiliation(s)
- Elena Gallego-Clemente
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain
- BioDatev, 24195 Villaobispo de las Regueras, Spain
| | - Víctor Moreno-González
- BioDatev, 24195 Villaobispo de las Regueras, Spain
- Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, 24071 León, Spain
| | - Ana Ibáñez
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain
| | - Carla Calvo-Peña
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain
| | - Seyedehtannaz Ghoreshizadeh
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain
| | - Sebastjan Radišek
- Slovenian Institute of Hop Research and Brewing, 3310 Žalec, Slovenia
| | - Rebeca Cobos
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain
| | - Juan José R Coque
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain
| |
Collapse
|
5
|
Park I, Seo YS, Mannaa M. Recruitment of the rhizo-microbiome army: assembly determinants and engineering of the rhizosphere microbiome as a key to unlocking plant potential. Front Microbiol 2023; 14:1163832. [PMID: 37213524 PMCID: PMC10196466 DOI: 10.3389/fmicb.2023.1163832] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
The viable community of microorganisms in the rhizosphere significantly impacts the physiological development and vitality of plants. The assembly and functional capacity of the rhizosphere microbiome are greatly influenced by various factors within the rhizosphere. The primary factors are the host plant genotype, developmental stage and status, soil properties, and resident microbiota. These factors drive the composition, dynamics, and activity of the rhizosphere microbiome. This review addresses the intricate interplay between these factors and how it facilitates the recruitment of specific microbes by the host plant to support plant growth and resilience under stress. This review also explores current methods for engineering and manipulating the rhizosphere microbiome, including host plant-mediated manipulation, soil-related methods, and microbe-mediated methods. Advanced techniques to harness the plant's ability to recruit useful microbes and the promising use of rhizo-microbiome transplantation are highlighted. The goal of this review is to provide valuable insights into the current knowledge, which will facilitate the development of cutting-edge strategies for manipulating the rhizosphere microbiome for enhanced plant growth and stress tolerance. The article also indicates promising avenues for future research in this field.
Collapse
Affiliation(s)
- Inmyoung Park
- School of Food and Culinary Arts, Youngsan University, Busan, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Department of Plant Pathology, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Behairi S, Baha N, Barakat M, Ortet P, Achouak W, Heulin T, Kaci Y. Bacterial diversity and community structure in the rhizosphere of the halophyte Halocnemum strobilaceum in an Algerian arid saline soil. Extremophiles 2022; 26:18. [PMID: 35652980 DOI: 10.1007/s00792-022-01268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/05/2022] [Indexed: 11/04/2022]
Abstract
Hypersaline ecosystems host a particular microbiota, which can be specifically recruited by halophytes. In order to broaden our knowledge of hypersaline ecosystems, an in natura study was conducted on the microbiota associated with the halophyte Halocnemum strobilaceum from alkaline-saline arid soil in Algeria. We collected and identified a total of 414 strains isolated from root tissues (RT), root-adhering soil (RAS), non-adhering rhizospheric soil (NARS) and bulk soil (BS) using different NaCl concentrations. Our data showed that halophilic and halotolerant bacterial isolates in BS and the rhizosphere belonged to 32 genera distributed in Proteobacteria (49%), Firmicutes (36%), Actinobacteria (14%) and Bacteroidetes (1%). Bacterial population size and species diversity were greatly increased in the rhizosphere (factor 100). The reservoir of diversity in BS was dominated by the genera Bacillus and Halomonas. Bacillus/Halomonas ratio decreased with the proximity to the roots from 2.2 in BS to 0.3 at the root surface. Salt screening of the strains showed that species belonging to nine genera were able to grow up to 5.1 M NaCl. Thus, we found that H. strobilaceum exerted a strong effect on the diversity of the recruited microbiota with an affinity strongly attributed to the genus Halomonas.
Collapse
Affiliation(s)
- Sabrina Behairi
- Team of Soil Biology, Laboratory of Organisms Biology and Physiology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), BP 32 El Alia, 16111, Bab Ezzouar, Algiers, Algeria
| | - Nassima Baha
- Team of Soil Biology, Laboratory of Organisms Biology and Physiology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), BP 32 El Alia, 16111, Bab Ezzouar, Algiers, Algeria
| | - Mohamed Barakat
- Lab of Microbial Ecology of the Rhizosphere (LEMiRE), ECCOREV FR3098, UMR7265 BIAM, AMU, CEA, CNRS, 13115, Saint-Paul-lez-Durance, France
| | - Philippe Ortet
- Lab of Microbial Ecology of the Rhizosphere (LEMiRE), ECCOREV FR3098, UMR7265 BIAM, AMU, CEA, CNRS, 13115, Saint-Paul-lez-Durance, France
| | - Wafa Achouak
- Lab of Microbial Ecology of the Rhizosphere (LEMiRE), ECCOREV FR3098, UMR7265 BIAM, AMU, CEA, CNRS, 13115, Saint-Paul-lez-Durance, France
| | - Thierry Heulin
- Lab of Microbial Ecology of the Rhizosphere (LEMiRE), ECCOREV FR3098, UMR7265 BIAM, AMU, CEA, CNRS, 13115, Saint-Paul-lez-Durance, France
| | - Yahia Kaci
- Team of Soil Biology, Laboratory of Organisms Biology and Physiology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), BP 32 El Alia, 16111, Bab Ezzouar, Algiers, Algeria.
| |
Collapse
|
7
|
Gao L, Huang Y, Liu Y, Mohamed OAA, Fan X, Wang L, Li L, Ma J. Bacterial Community Structure and Potential Microbial Coexistence Mechanism Associated with Three Halophytes Adapting to the Extremely Hypersaline Environment. Microorganisms 2022; 10:1124. [PMID: 35744642 PMCID: PMC9228163 DOI: 10.3390/microorganisms10061124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Halophytes play a crucial ecological role in drought and saline-alkali environments. However, there is limited knowledge about the structure of bacterial communities and the potential microbial coexistence mechanism associated with halophytes. This study investigated the diversity and community structure of endophytic and rhizospheric bacteria associated with three halophytes by applying high-throughput sequencing and geochemistry analyses on the studied soils. We collected 18 plant and 21 soil samples, and sequenced the V3 and V4 hypervariable regions of the 16S rRNA gene using next-generation sequencing (NGS). We also assessed geochemistry of the studied soils. The research suggested that rhizospheric bacterial richness and diversity associated with three halophytes were all significantly higher than for endophytic bacteria. The microbial community analysis indicated that Actinobacteria, Firmicutes, Bacteroidetes and Proteobacteria were the dominating bacterial phyla. Most unassigned operational taxonomic units (OTUs) implied that the microbes associated with halophytes contained abundant potential novel taxa, which are significant microbial resources. The high-abundance OTU phylogenetic tree supported the above views as well. Additionally, network analysis indicated that some conditional rare taxa (CRT) also might be keystone taxa during halophyte microbial community construction. The results of non-metric multidimensional scaling (NMDS) ordination analysis indicated significant dissimilarities in the microbial community among different sample groups. Sixty-two biomarkers were detected from seven different sample groups by linear discriminant analysis effect size (LEFSe) analysis. Microbial functions predicted based on phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt2) demonstrated that the abundances of nitrogen metabolism genes of endophytic bacteria were significantly higher than in rhizobacteria. Environmental factor analysis confirmed that different soil properties have different degrees of influence on the abundance and composition of the microbiota. To better adapt to the extreme hypersaline environment, halophytes could specifically recruit some plant beneficial bacterial taxa, such as nitrogen-fixing bacteria and extremely halophilic or halotolerant bacteria, to help them robustly grow and proliferate. All our preliminary results highlight microbial diversity and community related to halophytes grown on saline-alkali land of arid areas. Simultaneously, this work also advanced our further understanding of the halophyte microbiome associated with plants, and their role in plant adaptation to the extremely hypersaline environment.
Collapse
Affiliation(s)
- Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.G.); (Y.H.); (Y.L.); (O.A.A.M.); (X.F.); (L.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.G.); (Y.H.); (Y.L.); (O.A.A.M.); (X.F.); (L.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.G.); (Y.H.); (Y.L.); (O.A.A.M.); (X.F.); (L.W.)
| | - Osama Abdalla Abdelshafy Mohamed
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.G.); (Y.H.); (Y.L.); (O.A.A.M.); (X.F.); (L.W.)
| | - Xiaorong Fan
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.G.); (Y.H.); (Y.L.); (O.A.A.M.); (X.F.); (L.W.)
| | - Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.G.); (Y.H.); (Y.L.); (O.A.A.M.); (X.F.); (L.W.)
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.G.); (Y.H.); (Y.L.); (O.A.A.M.); (X.F.); (L.W.)
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding 071002, China
| | - Jinbiao Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.G.); (Y.H.); (Y.L.); (O.A.A.M.); (X.F.); (L.W.)
| |
Collapse
|
8
|
Abstract
Microbial composition and functions in the rhizosphere—an important microbial hotspot—are among the most fascinating yet elusive topics in microbial ecology. We used 557 pairs of published 16S rDNA amplicon sequences from the bulk soils and rhizosphere in different ecosystems around the world to generalize bacterial characteristics with respect to community diversity, composition, and functions. The rhizosphere selects microorganisms from bulk soil to function as a seed bank, reducing microbial diversity. The rhizosphere is enriched in Bacteroidetes, Proteobacteria, and other copiotrophs. Highly modular but unstable bacterial networks in the rhizosphere (common for r-strategists) reflect the interactions and adaptations of microorganisms to dynamic conditions. Dormancy strategies in the rhizosphere are dominated by toxin–antitoxin systems, while sporulation is common in bulk soils. Functional predictions showed that genes involved in organic compound conversion, nitrogen fixation, and denitrification were strongly enriched in the rhizosphere (11–182%), while genes involved in nitrification were strongly depleted. Understanding soil microbiota dynamics is key the development of soil-based sustainable agriculture and conservation strategies. This meta-analysis shows that bulk soil functions as a seed bank for the rhizosphere, which encompasses a rich microbiota adapted to dynamic conditions in hotpots.
Collapse
|
9
|
Luo J, Zhang Z, Hou Y, Diao F, Hao B, Bao Z, Wang L, Guo W. Exploring Microbial Resource of Different Rhizocompartments of Dominant Plants Along the Salinity Gradient Around the Hypersaline Lake Ejinur. Front Microbiol 2021; 12:698479. [PMID: 34322109 PMCID: PMC8312270 DOI: 10.3389/fmicb.2021.698479] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
Lake littoral zones can also be regarded as another extremely hypersaline environment due to hypersaline properties of salt lakes. In this study, high-throughput sequencing technique was used to analyze bacteria and fungi from different rhizocompartments (rhizosphere and endosphere) of four dominant plants along the salinity gradient in the littoral zones of Ejinur Salt Lake. The study found that microbial α-diversity did not increase with the decrease of salinity, indicating that salinity was not the main factor on the effect of microbial diversity. Distance-based redundancy analysis and regression analysis were used to further reveal the relationship between microorganisms from different rhizocompartments and plant species and soil physicochemical properties. Bacteria and fungi in the rhizosphere and endosphere were the most significantly affected by SO4 2-, SOC, HCO3 -, and SOC, respectively. Correlation network analysis revealed the potential role of microorganisms in different root compartments on the regulation of salt stress through synergistic and antagonistic interactions. LEfSe analysis further indicated that dominant microbial taxa in different rhizocompartments had a positive response to plants, such as Marinobacter, Palleronia, Arthrobacter, and Penicillium. This study was of great significance and practical value for understanding salt environments around salt lakes to excavate the potential microbial resources.
Collapse
Affiliation(s)
- Junqing Luo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zhechao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yazhou Hou
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Fengwei Diao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zhihua Bao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lixin Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|