1
|
Klug C, Sivgin T, Miedema F, Scheffold B, Reisdorf AG, Stössel I, Maxwell EE, Scheyer TM. Swiss ichthyosaurs: a review. SWISS JOURNAL OF PALAEONTOLOGY 2024; 143:31. [PMID: 39229570 PMCID: PMC11366730 DOI: 10.1186/s13358-024-00327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/28/2024] [Indexed: 09/05/2024]
Abstract
Switzerland is an ichthyosaur country: it has a rich record of marine reptile fossils, particularly the fish-shaped ichthyosaurs, and the according research. Here, we provide an overview over the 12 or more genera and at least 13 species plus numerous fragmentary remains of ichthyosaurs from the Triassic to the Cretaceous that have been discovered in twelve cantons thus far, of which four species are based on Swiss holotypes. This wealth of ichthyosaur species can be explained by their abundance in the Middle Triassic conservation deposits (Konservat Lagerstätte) of Monte San Giorgio, as well as occasional discoveries in strata of Middle Triassic to Early Cretaceous age. The moderate abundance of outcrops in reasonable conditions in combination with the long history of palaeontological research in Switzerland explains this good fossil record. In addition to this unique overview, we provide more data for further studies and update the knowledge of these taxa.
Collapse
Affiliation(s)
- Christian Klug
- Universität Zürich, Paläontologisches Institut, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Timur Sivgin
- Universität Zürich, Paläontologisches Institut, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Feiko Miedema
- Staatliches Museum Für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany
- Naturkundemuseum Bamberg, 96047 Bamberg, Germany
| | - Beat Scheffold
- Universität Zürich, Paläontologisches Institut, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | | | - Iwan Stössel
- Department Erdwissenschaften, ETH Zürich, Sonneggstrasse 5, 8092 Zurich, Switzerland
| | - Erin E. Maxwell
- Staatliches Museum Für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany
| | - Torsten M. Scheyer
- Universität Zürich, Paläontologisches Institut, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| |
Collapse
|
2
|
Bennion RF, Maxwell EE, Lambert O, Fischer V. Craniodental ecomorphology of the large Jurassic ichthyosaurian Temnodontosaurus. J Anat 2024; 244:22-41. [PMID: 37591692 PMCID: PMC10734653 DOI: 10.1111/joa.13939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Marine amniotes have played many crucial roles in ocean ecosystems since the Triassic, including predation at the highest trophic levels. One genus often placed into this guild is the large Early Jurassic neoichthyosaurian Temnodontosaurus, the only post-Triassic ichthyosaurian known with teeth which bear a distinct cutting edge or carina. This taxonomically problematic genus is currently composed of seven species which show a wide variety of skull and tooth morphologies. Here we assess the craniodental disparity in Temnodontosaurus using a series of functionally informative traits. We describe the range of tooth morphologies in the genus in detail, including the first examples of serrated carinae in ichthyosaurians. These consist of false denticles created by the interaction of enamel ridgelets with the carinal keel, as well as possible cryptic true denticles only visible using scanning electron microscopy. We also find evidence for heterodonty in the species T. platyodon, with unicarinate mesial teeth likely playing a role in prey capture and labiolingually compressed, bicarinate distal teeth likely involved in prey processing. This type of heterodonty appears to be convergent with a series of other marine amniotes including early cetaceans. Overall, the species currently referred to as the genus Temnodontosaurus show a range of craniodental configurations allowing prey to be captured and processed in different ways - for example, T. eurycephalus has a deep snout and relatively small bicarinate teeth likely specialised for increased wound infliction and grip-and-tear feeding, whereas T. platyodon has a more elongate yet robust snout and larger teeth and may be more adapted for grip-and-shear feeding. These results suggest the existence of niche partitioning at higher trophic levels in Early Jurassic ichthyosaurians and have implications for future work on the taxonomy of this wastebasket genus, as well as for research into the ecology of other extinct megapredatory marine tetrapods.
Collapse
Affiliation(s)
- R F Bennion
- Evolution & Diversity Dynamics Lab, Université de Liège, Liège, Belgium
- OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - E E Maxwell
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - O Lambert
- OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - V Fischer
- Evolution & Diversity Dynamics Lab, Université de Liège, Liège, Belgium
| |
Collapse
|
3
|
Laboury A, Bennion RF, Thuy B, Weis R, Fischer V. Anatomy and phylogenetic relationships of Temnodontosaurus zetlandicus (Reptilia: Ichthyosauria). Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlab118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Parvipelvia is a major clade of ichthyosaurians that diversified during the Triassic-Jurassic transition. The interrelationships of early parvipelvians remain unclear and many genera are loosely diagnosed, such as Temnodontosaurus, an ecologically important genus from the Early Jurassic of Western Europe. One taxon concentrates many taxonomic issues: ‘Ichthyosaurus’ acutirostris was previously assigned to Temnodontosaurus and for which ‘Ichthyosaurus’ zetlandicus represents a junior synonym. We redescribe the holotype of ‘Ichthyosaurus’ zetlandicus (CAMSM J35176) and a new specimen probably attributable to this taxon (MNHNL TU885) from the Toarcian of Luxembourg. We find that Temnodontosaurus zetlandicus comb. nov. is a valid species that should be referred to the genus Temnodontosaurus, sharing a number of traits with Temnodontosaurus nuertingensis and Temnodontosaurus trigonodon, despite having a distinct cranial architecture. Our phylogenetic analyses under both implied weighting maximum parsimony and Bayesian inference recover T. zetlandicus as closely related to several species currently assigned to Temnodontosaurus. Species included in Temnodontosaurus form a polyphyletic yet well-clustered group among basal neoichthyosaurians, demonstrating that the monophyly of this genus needs to be thoroughly investigated.
Collapse
Affiliation(s)
- Antoine Laboury
- Evolution & Diversity Dynamics Lab, University of Liège, 14 Allée du 6 Août, Liège 4000, Belgium
| | - Rebecca F Bennion
- Evolution & Diversity Dynamics Lab, University of Liège, 14 Allée du 6 Août, Liège 4000, Belgium
- Palaeontology Department, Royal Belgian Institute of Natural Sciences, 29, Rue Vautier, 1000 Brussels, Belgium
| | - Ben Thuy
- Palaeontology Departement, Natural History Museum Luxembourg, 25 Rue Münster, L-2160 Luxembourg, Grand-Duchy of Luxembourg
| | - Robert Weis
- Palaeontology Departement, Natural History Museum Luxembourg, 25 Rue Münster, L-2160 Luxembourg, Grand-Duchy of Luxembourg
| | - Valentin Fischer
- Evolution & Diversity Dynamics Lab, University of Liège, 14 Allée du 6 Août, Liège 4000, Belgium
| |
Collapse
|
4
|
Yin YL, Ji C, Zhou M. The anatomy of the palate in Early Triassic Chaohusaurus brevifemoralis (Reptilia: Ichthyosauriformes) based on digital reconstruction. PeerJ 2021; 9:e11727. [PMID: 34268013 PMCID: PMC8269639 DOI: 10.7717/peerj.11727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
The palatal anatomy of ichthyosauriforms remains largely unknown. Here, the complete palate of the early-branching ichthyosauriform Chaohusaurus brevifemoralis is reconstructed and described for the first time with the assistance of high-resolution X-ray computed tomography (CT) scanning on the basis of the three-dimensionally preserved skull of its paratype (GMPKU-P-3086) from the Lower Triassic of South China. The reconstruction reveals new palatal features of C. brevifemoralis. The palatine contacts the jugal directly, which is observed in ichthyosauriforms for the first time. A single row of denticles is present on each side of the palate. The vomer exceeds the anterior and posterior margins of the internal naris. The pterygoid is posterior to the internal naris. The epipterygoid is present and the ectopterygoid is absent.
Collapse
Affiliation(s)
- Ya-Lei Yin
- Department of Geology and Geological Museum, Peking University, Beijing, China
| | - Cheng Ji
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Min Zhou
- Department of Geology and Geological Museum, Peking University, Beijing, China
| |
Collapse
|
5
|
Fischer V, Weis R, Thuy B. Refining the marine reptile turnover at the Early-Middle Jurassic transition. PeerJ 2021; 9:e10647. [PMID: 33665003 PMCID: PMC7906043 DOI: 10.7717/peerj.10647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/04/2020] [Indexed: 11/21/2022] Open
Abstract
Even though a handful of long-lived reptilian clades dominated Mesozoic marine ecosystems, several biotic turnovers drastically changed the taxonomic composition of these communities. A seemingly slow paced, within-geological period turnover took place across the Early–Middle Jurassic transition. This turnover saw the demise of early neoichthyosaurians, rhomaleosaurid plesiosaurians and early plesiosauroids in favour of ophthalmosaurid ichthyosaurians and cryptoclidid and pliosaurid plesiosaurians, clades that will dominate the Late Jurassic and, for two of them, the entire Early Cretaceous as well. The fossil record of this turnover is however extremely poor and this change of dominance appears to be spread across the entire middle Toarcian–Bathonian interval. We describe a series of ichthyosaurian and plesiosaurian specimens from successive geological formations in Luxembourg and Belgium that detail the evolution of marine reptile assemblages across the Early–Middle Jurassic transition within a single area, the Belgo–Luxembourgian sub-basin. These fossils reveal the continuing dominance of large rhomaleosaurid plesiosaurians, microcleidid plesiosaurians and Temnodontosaurus-like ichthyosaurians up to the latest Toarcian, indicating that the structuration of the upper tier of Western Europe marine ecosystems remained essentially constant up to the very end of the Early Jurassic. These fossils also suddenly record ophthalmosaurid ichthyosaurians and cryptoclidid plesiosaurians by the early Bajocian. These results from a geographically-restricted area provide a clearer picture of the shape of the marine reptile turnover occurring at the early–Middle Jurassic transition. This event appears restricted to the sole Aalenian stage, reducing the uncertainty of its duration, at least for ichthyosaurians and plesiosaurians, to 4 instead of 14 million years.
Collapse
Affiliation(s)
- Valentin Fischer
- Evolution & Diversity Dynamics Lab, UR Geology, Université de Liège, Liège, Belgium
| | - Robert Weis
- Department of palaeontology, Natural History Museum Luxembourg, Luxembourg, Grand-Duchy of Luxembourg
| | - Ben Thuy
- Department of palaeontology, Natural History Museum Luxembourg, Luxembourg, Grand-Duchy of Luxembourg
| |
Collapse
|
6
|
A rostral neurovascular system in the mosasaur Taniwhasaurus antarcticus. Naturwissenschaften 2020; 107:19. [PMID: 32333118 DOI: 10.1007/s00114-020-01677-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 10/24/2022]
Abstract
Mosasaurs were a cosmopolitan group of marine squamate reptiles that lived during the Late Cretaceous period. Tylosaurinae mosasaurs were characterized for having an edentulous rostrum anterior to the premaxillary teeth. External morphology of the snout of the tylosaurine Taniwhasaurus antarcticus from the Upper Cretaceous beds at James Ross Island (Antarctic Peninsula) shows a complex anatomy with diverse large foramina and bone sculpture. A computed tomography scan of the Taniwhasaurus rostrum revealed a complex internal neurovascular system of branched channels in the anteriormost part of the snout. Systems like this are present in extant aquatic vertebrates such as cetaceans and crocodiles to aid them with prey detection, and are inferred to have functioned in a similar manner for several extinct reptile clades such as plesiosaurs and ichthyosaurs. Thus, it is probable that Taniwhasaurus also was able to detect prey with an enhanced neural system located in its rostrum. This condition may be more widespread than previously thought among mosasaurs and other marine reptiles.
Collapse
|