1
|
Antonio J, Antonio B, Arent SM, Candow DG, Escalante G, Evans C, Forbes S, Fukuda D, Gibbons M, Harty P, Jagim AR, Kalman DS, Kerksick CM, Kurtz JA, Lillis J, Lowery L, Mastrofini GF, Mills S, Nelson M, Pereira F, Roberts J, Sagner M, Stout J, Tartar J, Wells A. Common Questions and Misconceptions About Energy Drinks: What Does the Scientific Evidence Really Show? Nutrients 2024; 17:67. [PMID: 39796501 PMCID: PMC11722573 DOI: 10.3390/nu17010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Energy drinks are a commonly consumed beverage, and studies suggest a possible performance-enhancing effect. A Google Scholar search using the keywords "energy drinks" and "exercise" yields numerous results, underscoring the voluminous research on this topic. However, there are questions regarding the effectiveness and safety of energy drinks. These questions include, but are not limited to: (1) What are the main active ingredients in energy drinks? (2) Do energy drinks assist in weight management? (3) Do energy drinks enhance aerobic performance? (4) Do energy drinks enhance athletic speed? (5) Do energy drinks improve reaction time? (6) Do energy drinks enhance lean tissue mass? (7) Can energy drinks improve cognitive performance? (8) Does the acute consumption of energy drinks elevate resting energy expenditure? (9) Is there any evidence to suggest that energy drinks are more effective than an identical serving of caffeine alone? (10) Are there sex differences in the response to energy drink consumption? (11) Do energy drinks affect sleep or sleepiness? (12) Should pregnant women avoid energy drinks? (13) Do energy drinks adversely affect cardiovascular function? (14) Does consuming energy drinks cause brain damage? (15) What are other safety considerations regarding energy drinks? (16) Is there any evidence to suggest that energy drinks are more effective than an identical serving of caffeine alone? (17) If caffeine is the main active ingredient in energy drinks and coffee, why is there a discrepancy in the adverse events reported for each? To address these questions, we performed an evidence-based scientific evaluation of the literature on energy drink supplementation.
Collapse
Affiliation(s)
- Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL 33328, USA
| | - Brandi Antonio
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA (D.F.)
| | - Shawn M. Arent
- Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (S.M.A.)
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada; (D.G.C.); (S.M.)
| | - Guillermo Escalante
- College of Natural Sciences, California State University, San Bernadino, CA 92407, USA
| | - Cassandra Evans
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL 33328, USA
| | - Scott Forbes
- Department of Physical Education Studies, Brandon University, Brandon, MB R7A 6A9, Canada
| | - David Fukuda
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA (D.F.)
| | | | - Patrick Harty
- College of Science, Technology, and Health, Lindenwood University, St. Charles, MO 63301, USA (C.M.K.)
| | | | - Douglas S. Kalman
- Department of Psychology and Neuroscience, Nova Southeastern University, Davie, FL 33314, USA (J.T.)
| | - Chad M. Kerksick
- College of Science, Technology, and Health, Lindenwood University, St. Charles, MO 63301, USA (C.M.K.)
| | - Jennifer A. Kurtz
- Department of Public Health & Exercise Science, Appalachian State University, Boone, NC 28607, USA
| | - Joseph Lillis
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK (J.R.)
| | - Lonnie Lowery
- Walsh University, Department of Exercise Science, North Canton, OH 44720, USA
| | - Gianna F. Mastrofini
- Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (S.M.A.)
| | - Scotty Mills
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada; (D.G.C.); (S.M.)
| | | | | | - Justin Roberts
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK (J.R.)
| | - Michael Sagner
- European Society of Preventive Medicine, Oxford Science Park,
Robert Robinson Avenue, Oxford OX4 4GP, UK
| | - Jeffrey Stout
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA (D.F.)
| | - Jaime Tartar
- Department of Psychology and Neuroscience, Nova Southeastern University, Davie, FL 33314, USA (J.T.)
| | - Adam Wells
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA (D.F.)
| |
Collapse
|
2
|
Wei Y, Miao Z, Ye H, Wu M, Wei X, Zhang Y, Cai L. The Effect of Caffeine Exposure on Sleep Patterns in Zebrafish Larvae and Its Underlying Mechanism. Clocks Sleep 2024; 6:749-763. [PMID: 39584977 PMCID: PMC11586999 DOI: 10.3390/clockssleep6040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
The effect of caffeine on the behavior and sleep patterns of zebrafish larvae, as well as its underlying mechanisms, has been a topic of great interest. This study aimed to investigate the impact of caffeine on zebrafish larval sleep/wake behavior and the expression of key regulatory genes such as cAMP-response element binding protein (CREB) and adenosine (ADA) in the sleep pathway. To begin, the study determined the optimal dose and duration of caffeine exposure, with the optimal doses found to be 31.25 μM, 62.5 μM, and 120 μM. Similarly, the optimal exposure time was established as no more than 120 h, ensuring a mortality rate of less than 10%. The confirmation of these conditions was achieved through the assessment of angiogenesis and the inflammatory reaction. As a result, the treatment time point of 24 h post-fertilization (hpf) was selected to examine the effects of caffeine on zebrafish larval sleep rhythm (48 h, with a light cycle of 14:10). Furthermore, the study analyzed the expression of clock genes (bmal1a, per1b, per2, per3, cry2), adenosine receptor genes (adora1a, adora1b, adora2aa, adora2ab, adora2b), and key regulatory factors (CREB and ADA). The research confirmed that caffeine could induce sleep pattern disorders, significantly upregulate adenosine receptor genes (adora1a, adora1b, adora2a, adora2ab, adora2b) (p < 0.05), and markedly decrease the total sleep time and sleep efficiency of the larvae. Additionally, the activity of ADA significantly increased during the exposure (p < 0.001), and the tissue-specific expression of CREB was also significantly increased, as assessed by immunofluorescence. Caffeine may regulate circadian clock genes through the ADA/ADORA/CREB pathway. These findings not only enhance our understanding of the effects of caffeine on zebrafish larvae but also provide valuable insights into the potential impact of caffeine on human behavior and sleep.
Collapse
Affiliation(s)
- Yuanzheng Wei
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Zongyu Miao
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Huixin Ye
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Meihui Wu
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Xinru Wei
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Yu Zhang
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Lei Cai
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| |
Collapse
|
3
|
Atheena Amar K, Ramachandran B. ENVIRONMENTAL STRESSORS DIFFERENTIALLY MODULATE ANXIETY-LIKE BEHAVIOUR IN MALE AND FEMALE ZEBRAFISH. Behav Brain Res 2023; 450:114470. [PMID: 37148914 DOI: 10.1016/j.bbr.2023.114470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
How differently male and female responds in a stressful situation is a matter of curiosity. Apart from curiosity, this opens a new arena to the synthesis of personalized/individualized medications. Here, we used zebrafish, a suitable experimental animal model to study stress and anxiety. We evaluated the differential responses in adult male and female zebrafish on the acute exposure of three different stressors: Caffeine (100mg/L), Conspecific alarm substance (3.5ml/L), and sight of sympatric predators (Leaf fish and Snakehead) with the help of two different behavioural paradigms (Novel tank test & Predator exposure). Behavioural responses were captured over 6minutes and quantified using Smart 3.0. Male zebrafish were found to be more responsive to caffeine treatment. Conspecific alarm substance-challenged males and females showed robust alarm reactions whereas females were found to be more prone to it. Female zebrafish showed statistically significant aversion to the visual representation of sympatric predators. Taken together, each stressor induced differential responses in male and female zebrafish.
Collapse
Affiliation(s)
- K Atheena Amar
- Neuronal Plasticity Group, Department of Zoology, University of Calicut, Thenhipalam, Malappuram, Kerala-673635, India
| | - Binu Ramachandran
- Neuronal Plasticity Group, Department of Zoology, University of Calicut, Thenhipalam, Malappuram, Kerala-673635, India.
| |
Collapse
|
4
|
Santos N, Picolo V, Domingues I, Perillo V, Villacis RAR, Grisolia CK, Oliveira M. Effects of environmental concentrations of caffeine on adult zebrafish behaviour: a short-term exposure scenario. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63776-63787. [PMID: 37058238 PMCID: PMC10172215 DOI: 10.1007/s11356-023-26799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Caffeine (CAF) has been considered an emerging environmental contaminant and its presence indicator of anthropogenic contamination. This study evaluated the effects of environmental concentrations of CAF (0, 0.5, 1.5, and 300 μg. L-1) on the behaviour of adult zebrafish (Danio rerio) after 7 days of exposure. The components of feeding, locomotion, boldness (new tank test), sociability (schooling test), and aggression (mirror test) were analysed. Growth rate and weight were investigated as complementary measures. CAF (0.5, 1.5, and 300 μg. L-1) reduced exploratory behaviour in zebrafish, increased feeding latency time (1.5, and 300 μg. L-1), and decreased growth rate and fish weight (300 μg. L-1). CAF also induced aggressive behaviour (0.5, 1.5, and 300 μg. L-1) and decreased appetence to the shoal (sociability) (0.5, and 1.5 μg. L-1). This study showed that low doses of CAF can induce behavioural effects in zebrafish that may have significant long-term impacts on vital ecological functions.
Collapse
Affiliation(s)
- Niedja Santos
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Victor Picolo
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, University Campus Darcy Ribeiro, Brasilia, DF, 70910-900, Brazil
- Graduate Program in Molecular Pathology, Faculty of Health Sciences, University of Brasilia, University Campus Darcy Ribeiro, Brasilia, DF, 70910-900, Brazil
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vitória Perillo
- Laboratory of Toxicological Genetics, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Rolando A R Villacis
- Laboratory of Toxicological Genetics, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Cesar Koppe Grisolia
- Laboratory of Toxicological Genetics, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
5
|
Examining behavioural test sensitivity and locomotor proxies of anxiety-like behaviour in zebrafish. Sci Rep 2023; 13:3768. [PMID: 36882472 PMCID: PMC9992706 DOI: 10.1038/s41598-023-29668-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023] Open
Abstract
This study assessed the sensitivity of four anxiety-like behaviour paradigms in zebrafish: the novel tank dive test, shoaling test, light/dark test, and the less common shoal with novel object test. A second goal was to measure the extent to which the main effect measures are related to locomotor behaviours to determine whether swimming velocity and freezing (immobility) are indicative of anxiety-like behaviour. Using the well-established anxiolytic, chlordiazepoxide, we found the novel tank dive to be most sensitive followed by the shoaling test. The light/dark test and shoaling plus novel object test were the least sensitive. A principal component analysis and a correlational analysis also showed the locomotor variables, velocity and immobility, did not predict the anxiety-like behaviours across all behaviour tests.
Collapse
|
6
|
Understanding the complex interplay of persistent and antipersistent regimes in animal movement trajectories as a prominent characteristic of their behavioral pattern profiles: Towards an automated and robust model based quantification of anxiety test data. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
7
|
Wu J, Yan B, Bao M, Shen J, Zheng P, Wu D, Wang J, Li Z, Jiang K. Early life exposure to chronic unpredictable stress induces anxiety-like behaviors and increases the excitability of cerebellar neurons in zebrafish. Behav Brain Res 2023; 437:114160. [PMID: 36257559 DOI: 10.1016/j.bbr.2022.114160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022]
Abstract
Anxiety is a common emotional disorder in children. To understand its underlying mechanisms, chronic unpredictable stress (CUS) has been established as a stress model in zebrafish. By using the tall tank test, the stress response reliability could be improved in adult fish which has not been confirmed in larvae. In addition, the increasing evidences have shown that cerebellum plays important roles in anxiety. Whether CUS will affect cerebellar neuronal activity remains unknown. We found that CUS exposure to larvae (from 10 to 17 days post fertilization) induced anxiety-like behaviors and social cohesion impairments within 1-2 d after CUS, including a prolonged freezing time, an increased time spent at the bottom of tank, an increased thigmotaxis index, and an increased interindividual distance. Our results showed that the four behavioral tests were homogeneous, especially the tall tank test either anxiety-like behaviors or the basal locomotion. Furthermore, we found that CUS enhanced the excitability of cerebellar neurons, as the amplitude, frequency, time to peak and half-width of spontaneous firing significantly decreased, as well as the amplitude of excitatory post-synaptic current when compared with the control group. CUS also activated hyperpolarization-activated cyclic nucleotide-gated and potassium channels of cerebellar neurons. Multiple linear regression analysis showed that the total distance in bottom (tall tank test) was correlated positively with outward Na+-K+ currents (r = 0.848, P = 0.016), and the thigmotaxis index (open field test) correlated with action potential amplitude (r = 0.854, P = 0.030). Altogether, early life CUS transiently induced an anxiety-like behavior which could be more accurately assessed by combining the tall tank test with other behavior tests in young zebrafish. CUS increased the excitability of cerebellar neurons might provide new targets to treat emotional diseases such as anxiety.
Collapse
Affiliation(s)
- Jing Wu
- Department of Child Psychology
| | | | | | - Jue Shen
- Department of Neurology, The Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center For Child Health, 3333 Binsheng Road, Hangzhou 310051, China
| | | | - Dian Wu
- Department of Child Psychology
| | | | - Zhongxia Li
- Department of Pediatrics, The seventh affiliated Hospital of Guangxi Medical University (Wuzhou GongRen Hospital), 1 Nansan Lane, Gaodi Road, Wuzhou City, Guangxi Province 543000, China
| | - Kewen Jiang
- Department of Child Psychology; Department of Biobank Center.
| |
Collapse
|
8
|
Pharmacological effects of caffeine on ventilation in adult zebrafish under free-swimming conditions. Sci Rep 2022; 12:17649. [PMID: 36271109 PMCID: PMC9587047 DOI: 10.1038/s41598-022-22681-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023] Open
Abstract
The zebrafish is widely used as a model in biological studies. In particular, the heart rate and cortisol levels of zebrafish are commonly measured to elucidate the pharmacological effects of chemical substances. Meanwhile, although ventilation is also an important physiological index reflecting emotion-like states, few studies have evaluated the effects of chemicals on ventilation in adult zebrafish. In this study, we assessed whether it is possible to evaluate the pharmacological effects elicited by caffeine in adult zebrafish under free-swimming conditions. We measured the ventilation in adult zebrafish exposed to multiple concentrations of caffeine under restraint and free-swimming conditions and evaluated the pharmacological effects of caffeine using linear mixed model analysis. In addition, results of electrocardiogram analysis and swimming speeds were compared with those in previous reports to ensure that an appropriate dose of caffeine was administered. Under restraint conditions, caffeine significantly decreased heart rate and increased ventilation in a concentration-dependent manner. Under free-swimming conditions, the ventilation rate significantly increased with increasing caffeine concentration. These results indicate that the pharmacological effects elicited by chemicals on ventilation can be evaluated in free-swimming zebrafish.
Collapse
|
9
|
Johnson A, Stewart A, El-Hakim I, Hamilton TJ. Effects of super-class cannabis terpenes beta-caryophyllene and alpha-pinene on zebrafish behavioural biomarkers. Sci Rep 2022; 12:17250. [PMID: 36241680 PMCID: PMC9568608 DOI: 10.1038/s41598-022-21552-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/28/2022] [Indexed: 01/06/2023] Open
Abstract
Terpenes possess a wide range of medicinal properties and are potential therapeutics for a variety of pathological conditions. This study investigated the acute effects of two cannabis terpenes, β-caryophyllene and α-pinene, on zebrafish locomotion, anxiety-like, and boldness behaviour using the open field exploration and novel object approach tests. β-caryophyllene was administered in 0.02%, 0.2%, 2.0%, and 4% doses. α-pinene was administered in 0.01%, 0.02%, and 0.1% doses. As α-pinene is a racemic compound, we also tested its (+) and (-) enantiomers to observe any differential effects. β-caryophyllene had only a sedative effect at the highest dose tested. α-pinene had differing dose-dependent effects on anxiety-like and motor variables. Specifically, (+)-α-pinene and (-)-α-pinene had significant effects on anxiety measures, time spent in the thigmotaxis (outer) or center zone, in the open field test, as well as locomotor variables, swimming velocity and immobility. (+ /-)-α-pinene showed only a small effect on the open field test on immobility at the 0.1% dose. This study demonstrates that α-pinene can have a sedative or anxiolytic effect in zebrafish and may have different medicinal properties when isolated into its (+) or (-) enantiomers.
Collapse
Affiliation(s)
- Andréa Johnson
- Department of Psychology, MacEwan University, Edmonton, AB, Canada
| | - Alycia Stewart
- Department of Psychology, MacEwan University, Edmonton, AB, Canada
| | - Ismaeel El-Hakim
- Department of Psychology, MacEwan University, Edmonton, AB, Canada
| | - Trevor J Hamilton
- Department of Psychology, MacEwan University, Edmonton, AB, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
10
|
Sabadin GR, Biasuz E, Canzian J, Adedara IA, Rosemberg DB. A novel behavioral paradigm to measure anxiety-like behaviors in zebrafish by the concomitant assessment of geotaxis and scototaxis. Prog Neuropsychopharmacol Biol Psychiatry 2022; 118:110579. [PMID: 35618149 DOI: 10.1016/j.pnpbp.2022.110579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
Pathological anxiety is a set of diseases characterized by specific clinical manifestations and the use of alternative models may provide novel insights in translational neurobehavioral research. In zebrafish, the separate performance of novel tank and light dark tests in different order to assess anxiety using a same animal may provide conflicting data due to the battery effect and/or time-drug-response and variability across tests. To improve data reliability, we aimed to characterize a novel behavioral paradigm to measure geotaxis and scototaxis as anxiety-like responses in the same trial. The novel apparatus consisted of four colored-compartments, with specific white- and black sections delimited in both bottom and upper areas of the tank. The main baseline responses of zebrafish in the novel apparatus were measured and animals were further exposed to modulators of anxiety. Zebrafish showed robust habituation to novelty stress during the 6-min trial with preference for the black section while exploring the top area. Fluoxetine (100 μg/L, 15 min) reduced geotaxis and scototaxis and ketamine (20 mg/L, 20 min) decreased geotaxis and increased the distance traveled in the black section while exploring the top, possibly due to the increased circling behavior. As anxiogenic modulators, conspecific alarm substance (3.5 mL/L, 5 min) exacerbated risk assessment, geotaxis, and scototaxis, whereas caffeine (10 mg/L, 15 min) increased geotaxis and exploration in the black section of the top area. Since important correlations were also found for relevant anxiety-like behaviors, our findings support the predictive validity of this novel paradigm to simultaneously assess geotaxis and scototaxis in zebrafish. Moreover, it fully adheres to the 3Rs principle of animal experimentation of reducing the number of subjects tested, execution time, also minimizing a potential battery effect.
Collapse
Affiliation(s)
- Giovana R Sabadin
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Eduarda Biasuz
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Isaac A Adedara
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
11
|
Menezes FP, Amorim RR, Silva PF, Luchiari AC. Alcohol exposure and environmental enrichment effects on contextual fear conditioning in zebrafish. Behav Processes 2022; 197:104608. [DOI: 10.1016/j.beproc.2022.104608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 01/24/2023]
|
12
|
Age-dependent effects of embryonic ethanol exposure on anxiety-like behaviours in young zebrafish: A genotype comparison study. Pharmacol Biochem Behav 2022; 214:173342. [DOI: 10.1016/j.pbb.2022.173342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
|
13
|
Abstract
The use of multiple species to model complex human psychiatric disorders, such as ADHD, can give important insights into conserved evolutionary patterns underlying multidomain behaviors (e.g., locomotion, attention, and impulsivity). Here we discuss the advantages and challenges in modelling ADHD-like phenotypes in zebrafish (Danio rerio), a vertebrate species that has been widely used in neuroscience and behavior research. Moreover, multiple behavioral tasks can be used to model the core symptoms of ADHD and its comorbidities. We present a critical review of current ADHD studies in zebrafish, and how this species might be used to accelerate the discovery of new drug treatments for this disorder.
Collapse
Affiliation(s)
- Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK.
- Department of Genetics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
14
|
Effect of Tempeh on Gut Microbiota and Anti-Stress Activity in Zebrafish. Int J Mol Sci 2021; 22:ijms222312660. [PMID: 34884465 PMCID: PMC8658004 DOI: 10.3390/ijms222312660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
Rhizopus oryzae is a fungus used to ferment tempeh in Indonesia and is generally recognized as safe (GRAS) for human consumption by the USA FDA. We previously assessed the effect of a tempeh extract on cortisol levels in zebrafish but did not include behavioral studies. Here, we measured the GABA content in three strains of Rhizopus oryzae, two isolated by us (MHU 001 and MHU 002) and one purchased. We then investigated the effect of tempeh on cortisol and the gut microbiota in a zebrafish experimental model. GABA concentration was the highest in MHU 002 (9.712 ± 0.404 g kg−1) followed by our MHU 001 strain and the purchased one. The fish were divided into one control group fed a normal diet and three experimental groups fed soybean tempeh fermented with one of the three strains of Rhizopus oryzae. After two weeks, individual fish were subjected to unpredicted chronic stress using the novel tank diving test and the tank light–dark test. Next-generation sequencing was used to analyze gut microbial communities and RT-PCR to analyze the expression of BDNF (brain-derived neurotrophic factor) gene and of other genes involved in serotonin signaling/metabolism in gut and brain. Tempeh-fed zebrafish exhibited increased exploratory behavior (less stress) in both tank tests. They also had significantly reduced gut Proteobacteria (include E. coli) (51.90% vs. 84.97%) and significantly increased gut Actinobacteria (include Bifidobacterium spp.) (1.80% vs. 0.79%). The content of Bifidobacteriumadolescentis, a “psychobiotic”, increased ten-fold from 0.04% to 0.45%. Tempeh also increases BDNF levels in zebrafish brain. Rhizopus oryzae MHU 001 greatly improved the anti-stress effect of tempeh and microbiota composition in zebrafish gut.
Collapse
|
15
|
Clayman CL, Connaughton VP. Neurochemical and Behavioral Consequences of Ethanol and/or Caffeine Exposure: Effects in Zebrafish and Rodents. Curr Neuropharmacol 2021; 20:560-578. [PMID: 34766897 DOI: 10.2174/1570159x19666211111142027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Zebrafish are increasingly being utilized to model the behavioral and neurochemical effects of pharmaceuticals and, more recently, pharmaceutical interactions. Zebrafish models of stress establish that both caffeine and ethanol influence anxiety, though few studies have implemented co-administration to assess the interaction of anxiety and reward-seeking. Caffeine exposure in zebrafish is teratogenic, causing developmental abnormalities in the cardiovascular, neuromuscular, and nervous systems of embryos and larvae. Ethanol is also a teratogen and, as an anxiolytic substance, may be able to offset the anxiogenic effects of caffeine. Co-exposure to caffeine and alcohol impacts neuroanatomy and behavior in adolescent animal models, suggesting stimulant substances may moderate the impact of alcohol on neural circuit development. Here, we review the literature describing neuropharmacological and behavioral consequences of caffeine and/or alcohol exposure in the zebrafish model, focusing on neurochemistry, locomotor effects, and behavioral assessments of stress/anxiety as reported in adolescent/juvenile and adult animals. The purpose of this review is twofold: (1) describe the work in zebrafish documenting the effects of ethanol and/or caffeine exposure and (2) compare these zebrafish studies with comparable experiments in rodents. We focus on specific neurochemical pathways (dopamine, serotonin, adenosine, GABA, adenosine), anxiety-type behaviors (assessed with novel tank, thigmotaxis, shoaling), and locomotor changes resulting from both individual and co-exposure. We compare findings in zebrafish with those in rodent models, revealing similarities across species and identifying conservation of mechanisms that potentially reinforce co-addiction.
Collapse
Affiliation(s)
- Carly L Clayman
- Department of Biology and Center for Neuroscience and Behavior American University, Washington, DC 20016, United States
| | - Victoria P Connaughton
- Department of Biology and Center for Neuroscience and Behavior American University, Washington, DC 20016, United States
| |
Collapse
|
16
|
Lee J, Kim DH, Park SJ, Jong HR, Jung JW, Jeon YJ, Park SR, Kim GY, Lee S. Involvement of the hypothalamic-pituitary-interrenal axis in the antistress activities of Tenebrio molitor Larvae in zebrafish. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Bai L. Intelligent body behavior feature extraction based on convolution neural network in patients with craniocerebral injury. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:3781-3789. [PMID: 34198412 DOI: 10.3934/mbe.2021190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Patients with craniocerebral injury are in serious condition and inconvenient to take care of. This paper proposes a method of extracting the patient's body behavior feature based on convolution neural network, in order to reduce nursing workload and save hospital costs. The algorithm adopts double network model design, including the patient detection network model and the patient's body behavior feature extraction model. The algorithm is applied to the patient's body behavior detection system, so as to realize the recognition and monitoring of patients and improve the level of intelligent medical care for craniocerebral injury. Finally, the open source framework platform is used to test the patient behavior detection system. The experimental results show that the larger the test data set is, the higher the accuracy of patient body behavior feature extraction is. The average recognition rate of patient body behavior category is 97.8%, which verifies the effectiveness and correctness of the system. The application of convolution neural network connects image recognition with intelligent medical nursing, which provides reference and experience for intelligent medical nursing of patients with craniocerebral injury.
Collapse
Affiliation(s)
- Limei Bai
- Cangzhou Central Hospital, Hebei Province Cangzhou 061001, China
| |
Collapse
|
18
|
Caffeine-induced bradycardia, death, and anxiety-like behavior in zebrafish larvae. Forensic Toxicol 2021. [DOI: 10.1007/s11419-021-00577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
O'Daniel MP, Petrunich-Rutherford ML. Effects of chronic prazosin, an alpha-1 adrenergic antagonist, on anxiety-like behavior and cortisol levels in a chronic unpredictable stress model in zebrafish ( Danio rerio). PeerJ 2020; 8:e8472. [PMID: 32030326 PMCID: PMC6996499 DOI: 10.7717/peerj.8472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/27/2019] [Indexed: 01/05/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is often associated with significant neuroendocrine dysfunction and a variety of other symptoms. Today, there are limited efficacious treatment options for PTSD, none of which directly target the dysfunction observed with the hypothalamic-pituitary-adrenal (HPA) axis. The development of new pharmacological treatments is expensive and time consuming; thus, there is utility in repurposing compounds already approved for use in other conditions. One medication in particular that has shown promise for the alleviation of PTSD symptoms is prazosin, an alpha-1 adrenergic receptor antagonist used to treat hypertension. While there have been many studies indicating the efficacy of prazosin in the treatment of PTSD symptoms, no studies fully elucidate mechanisms elicited by this treatment, nor is it clear if prazosin normalizes neuroendocrine dysfunction associated with trauma exposure. The use of zebrafish (Danio rerio) has been growing in popularity, in part, due to the homology of the stress response system with mammals. In this study, the zebrafish model was utilized to determine behavioral and biological changes induced by chronic unpredictable stress (CUS) and how these effects could be modulated by chronic prazosin treatment. The results indicated that 7d of CUS increased anxiety-like behavior in the novel tank test and decreased basal levels of cortisol. Chronic (7d) prazosin treatment decreased anxiety-like behaviors overall but did not appear to affect CUS-induced changes in behavior and basal cortisol levels. This suggests that the clinical effectiveness of prazosin may not normalize dysregulated stress responses prevalent in many patients with PTSD, but that prazosin-induced relief from anxiety in stress-related conditions may involve an alternative mechanism other than by normalizing neuroendocrine dysfunction.
Collapse
Affiliation(s)
- Michael P O'Daniel
- Department of Psychology, Indiana University Northwest, Gary, IN, United States of America
| | | |
Collapse
|
20
|
Meguro S, Hosoi S, Hasumura T. High-fat diet impairs cognitive function of zebrafish. Sci Rep 2019; 9:17063. [PMID: 31745184 PMCID: PMC6863811 DOI: 10.1038/s41598-019-53634-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/03/2019] [Indexed: 01/14/2023] Open
Abstract
An unhealthy diet with excessive fat intake has often been claimed to induce not only obesity but also cognitive dysfunction in mammals; however, it is not known whether this is the case in zebrafish. Here, we investigated the effect of excessive fat in the diet on cognitive function and on gene expression in the telencephalon of zebrafish. Cognitive function, as measured by active avoidance test, was impaired by feeding of a high-fat diet compared with a control diet. In RNA sequencing analysis of the telencephalon, 97 genes were identified with a fold change in expression greater than 2 and a p-value less than 0.05 between the two diets. In quantitative real-time PCR analysis of the telencephalon, genes related to neuronal activity, anti-oxidative stress, blood–brain barrier function and amyloid-β degradation were found to be downregulated, whereas genes related to apoptosis and amyloid-β production were found to be upregulated, in the high-fat diet group, which are changes known to occur in mammals fed a high-fat diet. Collectively, these results are similar to those found in mammals, suggesting that zebrafish can serve as a suitable animal model in research into cognitive impairment induced by excessive fat in the diet.
Collapse
Affiliation(s)
- Shinichi Meguro
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.
| | - Sayaka Hosoi
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan
| | - Takahiro Hasumura
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan
| |
Collapse
|